分析 (1)根据其顶点坐标用顶点式二次函数通式设抛物线的解析式,然后根据图象在x轴上截得线段长是8,求得图象与x轴交于(-3,0)和(5,0)两点,代入抛物线中即可求得二次函数的解析式;
(2)先求出函数的解析式,确定函数的对称轴,再结合函数的定义域进行分类讨论.
解答 解:(1)∵二次函数f(x)的图象顶点为A(1,16),
∴设二次函数解析式为f(x)=a(x-1)2+16.
又∵图象在x轴上截得线段长是8,
∴图象与x轴交于(-3,0)和(5,0)两点.
∴a(-3-1)2+16=0,
∴a=-1,
∴所求二次函数解析式为f(x)=-x2+2x+15.
(2)g(x)=f(x)+(2a-2)x=(2a-2)x+f(x)=(2a-2)x+(-x2+2x+15)=-x2+2ax+15=-(x-a)2+a2+15.
对称轴为x=a,
若a≤0时,g(x)在区间[0,2]上为单调减函数,∴g(x)的最小值g(0)=15.
1<a<2时,g(x)在区间[0,a]上为单调递增函数,在[a,2]上为单调减函数,
∴x=0时,取得最小值,最小值g(a)=a2+15;
0≤a≤1,时,g(x)在区间[0,a]上为单调增函数,在[a,2]上为单调减函数,
∴当x=a时,取得最小值g(2)=a2+15;
a≥2时,g(x)在区间[0,2]上为单调增函数,
∴x=2时,g(x)取得最小值g(2)=11+4a.
点评 本题重点考查函数的解析式,考查函数的最值,解题的关键是利用待定系数法假设方程,利用函数对称轴与定义域的关系,合理进行分类讨论.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,2) | B. | (1,2] | C. | [1,2] | D. | (1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | 0 | 1 | 2 | 3 | 4 |
| y | 2.3 | 3.9 | 4.6 | 5.1 | 6.6 |
| A. | 2.45 | B. | 2.54 | C. | 2.64 | D. | 3.04 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com