精英家教网 > 高中数学 > 题目详情
18.如图,公园有一块边长为2的等边△ABC的边角地,现修成草坪,图中DE把草坪分成面积相等的两部分,D在AB上,E在AC上.
(1)设AD=x(x>0),求用x表示AE的函数关系式;
(2)设AD=x(x>0),ED=y,求用x表示y的函数关系式;
(3)如果DE是灌溉水管,为节约成本,希望它最短,DE的位置应在哪里?如果DE是参观线路,则希望它最长,DE的位置又应在哪里?请说明理由.

分析 (1)根据DE把草坪分成面积相等的两部分,利用任意三角形的面积公式建立关系即可.
(2)利用余弦定理建立关系即可.

解答 解:(1)由题意:DE把草坪分成面积相等的两部分,AD=x,
∴${S_{△ADE}}=\frac{1}{2}{S_{△ABC}}$,即$\frac{1}{2}x•AE•sin{60°}=\frac{{\sqrt{3}}}{2}$,∴$AE=\frac{2}{x}$(x>0),…①
(2)AD=x(x>0),ED=y,在△ADE中,y2=x2+AE2-2x•AE•cos60°,即y2=x2+AE2-x•AE,②
①代入②得:${y^2}={x^2}+{(\frac{2}{x})^2}-2$(y>0),∴$y=\sqrt{{x^2}+{{(\frac{2}{x})}^2}-2}$(1≤x≤2).
(3)如果DE是水管,$y=\sqrt{{x^2}+{{(\frac{2}{x})}^2}-2}≥\sqrt{2×2-2}=\sqrt{2}$,
当且仅当${x^2}=\frac{4}{x^2}$,即$x=\sqrt{2}$时“=”成立,故${y_{min}}=\sqrt{2}$,
即DE∥BC,且$AD=DE=\sqrt{2}$时,DE最短;
如果DE是参观线路,记$f(x)={x^2}+\frac{4}{x^2}$,
根据勾勾函数的图象及性质,可知函数在$[1,\sqrt{2}]$上递减,在$[\sqrt{2},2]$上递增,
故f(x)max=f(1)=f(2)=5,
∴${y_{max}}=\sqrt{5-2}=\sqrt{3}$,
即DE为AB中线或AC中线时,DE最长.

点评 本题考查余弦定理和基本不等式的性质以及函数的思想在实际问题中的运用和关系的建立.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.随机抽取某中学甲乙两班各6名学生,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.
(1)判断哪个班的平均身高较高,并说明理由;
(2)计算甲班的样本方差;
(3)现从乙班这6名学生中随机抽取两名学生,求至少有一名身高不低于175cm的学生被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知命题p:方程ax2+ax-2=0在[-1,1]上有解,命题q:只有一个实数x满足:x2+2ax+2a≤0.
(Ⅰ)若f(x)=ax2+ax-2,则f(x)的图象必定过两定点,试写出这两定点的坐标(-1,-2),(0,-2)(只需填写出两点坐标即可);
(Ⅱ)若命题“p或q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.现安排甲、乙、丙、丁4名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作都有一人参加.甲、乙不会开车但能从事其他三项工作,丙、丁都能胜任四项工作,则不同安排方案的种数为12 .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.直线l0:y=x+1绕点P(3,1)逆时针旋转90°得到直线l,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知正六边形ABCDEF的边长为1,则$\overrightarrow{AB}•\overrightarrow{AC}$的值为(  )
A.$-\frac{3}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.从4名男生和3名女生中任选2人参加演讲比赛,
(1)求所选2人都是男生的概率;
(2)求所选2人恰有1名女生的概率;
(3)求所选2人中至少有1名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.二次函数f(x)的图象顶点为A(1,16),且图象在x轴上截得线段长为8.
(1)求函数f(x)的解析式;
(2)令g(x)=f(x)+(2a-2)x,求函数g(x)在x∈[0,2]的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知正方体ABCD-A1B1C1D1内有一个内切球O,则在正方体ABCD-A1B1C1D1内任取点M,点M在球O内的概率是(  )
A.$\frac{π}{4}$B.$\frac{π}{8}$C.$\frac{π}{6}$D.$\frac{π}{12}$

查看答案和解析>>

同步练习册答案