精英家教网 > 高中数学 > 题目详情
13.直线l0:y=x+1绕点P(3,1)逆时针旋转90°得到直线l,求直线l的方程.

分析 求出所求直线的斜率,利用点斜式写出直线方程即可.

解答 解:直线l0:y=x+1的斜率是1,则直线l的斜率是-1.则y-1=-(x-3),
整理,得
y+x-4=0.

点评 本题考查了直线方程问题,考查直线的垂直关系,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.设M=a+$\frac{1}{a-2}$(2<a<3).N=x(4$\sqrt{3}$-3x)(0<x<$\frac{4\sqrt{3}}{3}$),则M,N的大小关系为(  )
A.M>NB.M<NC.M≥ND.M≤N

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若(x+1)n=xn+…+ax3+bx2+…+1(n∈N*),且a:b=3:1,则n的值为11.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=|x2-a|在区间[-1,1]上的最大值是a,那么实数a的取值范围是(  )
A.[0,+∞)B.[$\frac{1}{2}$,1]C.[$\frac{1}{2}$,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知a>0,b>0,若不等式$\frac{m}{2a+b}-\frac{2}{a}-\frac{1}{b}≤0$恒成立,则m的最大值为(  )
A.4B.16C.9D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,公园有一块边长为2的等边△ABC的边角地,现修成草坪,图中DE把草坪分成面积相等的两部分,D在AB上,E在AC上.
(1)设AD=x(x>0),求用x表示AE的函数关系式;
(2)设AD=x(x>0),ED=y,求用x表示y的函数关系式;
(3)如果DE是灌溉水管,为节约成本,希望它最短,DE的位置应在哪里?如果DE是参观线路,则希望它最长,DE的位置又应在哪里?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设函数$f(x)=\left\{\begin{array}{l}{4^x}-a,x≥0\\{log_2}({-x})+a,x<0\end{array}\right.$,若f(1)=3,则f(-2)的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知集合A={x|-2<x<5},集合$B=\left\{{x\left|{2<{{({\frac{1}{2}})}^x}<16}\right.}\right\}$,集合C={x|m+1≤x≤2m-1},
(1)求A∩B,A∪B;
(2)若A∪C=A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=cos(2x-$\frac{π}{3}$)的最小正周期是(  )
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

同步练习册答案