精英家教网 > 高中数学 > 题目详情
5.设函数$f(x)=\left\{\begin{array}{l}{4^x}-a,x≥0\\{log_2}({-x})+a,x<0\end{array}\right.$,若f(1)=3,则f(-2)的值为2.

分析 由已知得f(1)=41-a=3,从而a=1,进而f(-2)=log2(-2)+a=log22+1,由此能求出结果.

解答 解:∵函数$f(x)=\left\{\begin{array}{l}{4^x}-a,x≥0\\{log_2}({-x})+a,x<0\end{array}\right.$,f(1)=3,
∴f(1)=41-a=3,解得a=1,
∴f(-2)=log2(-2)+a=log22+1=2.
故答案为:2.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的前n项和为Sn,且满足${a_1}=\frac{1}{2},{a_n}+2{S_n}{S_{n-1}}=0(n≥2)$.
①数列$\left\{{\frac{1}{S_n}}\right\}$是否为等差数列?并证明你的结论;            
②求Sn
③求证:$S_1^2+S_2^2+S_3^2+…+S_n^2<\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知锐角三角形三边长分别为1,3,a,则a的取值范围是(  )
A.8<a<10B.2$\sqrt{2}<a<\sqrt{10}$C.$2\sqrt{2}<a<10$D.$\sqrt{10}<a<8$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.直线l0:y=x+1绕点P(3,1)逆时针旋转90°得到直线l,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知cos(π-α)=-$\frac{5}{13}$且α是第一象限角,则sinα=(  )
A.$-\frac{5}{13}$B.$\frac{12}{13}$C.$-\frac{12}{13}$D.$\frac{5}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.从4名男生和3名女生中任选2人参加演讲比赛,
(1)求所选2人都是男生的概率;
(2)求所选2人恰有1名女生的概率;
(3)求所选2人中至少有1名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知$f(x)={log_{\frac{1}{2}}}({1+x})-{log_{\frac{1}{2}}}({1-x})$
(1)求f(x)的定义域;
(2)求使f(x)>0成立的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)是定义在{x|x≠0}上的偶函数,且当x>0时,f(x)=log2x.
(1)求出函数f(x)的解析式;
(2)画出函数|f(x)|的图象,并根据图象写出函数|f(x)|的增区间;
(3)设g(x)=ax+1(a>0),对任意${x_1}∈[\frac{1}{2},4]$,存在${x_0}∈[\frac{1}{2},4]$使g(x1)=|f(x0)|,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知向量$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(1,-2),则$\overrightarrow{a}$•$\overrightarrow{b}$的值为(  )
A.-4B.8C.-1D.-7

查看答案和解析>>

同步练习册答案