分析 作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.
解答 解:由z=3x+2y得$y=-\frac{3}{2}x+\frac{z}{2}$,![]()
作出不等式组对应的平面区域如图(阴影部分):
平移直线$y=-\frac{3}{2}x+\frac{z}{2}$由图象可知当直线$y=-\frac{3}{2}x+\frac{z}{2}$经过点C时,直线$y=-\frac{3}{2}x+\frac{z}{2}$的截距最大,
此时z也最大,
由$\left\{\begin{array}{l}{y=-1}\\{x+y=1}\end{array}\right.$得$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$,即C(2,-1)
将C(2,-1)代入目标函数z=3x+2y,
得z=6-2=4.
故答案为:4.
点评 本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{1}{3}$] | B. | [$\frac{1}{3}$,$\frac{2}{3}$] | C. | [$\frac{2}{3}$,$\frac{4}{3}$] | D. | ($\frac{2}{3}$,$\frac{4}{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 设平面ADF与平面BEC1的交线为l,则直线C1E与l相交 | |
| B. | 在棱A1C1上存在点N,使得三棱锥N-ADF的体积为$\frac{\sqrt{3}}{7}$ | |
| C. | 设点M在BB1上,当BM=1时,平面CAM⊥平面ADF | |
| D. | 在棱A1B1上存在点P,使得C1P⊥AF |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 组号 | 分组 | 频数 | 频率 |
| 第1组 | [160,165) | 5 | 0.05 |
| 第2组 | [165,170) | ① | 0.35 |
| 第3组 | [170,175) | 30 | ② |
| 第4组 | [175,180) | 20 | 0.20 |
| 第5组 | [180,185] | 10 | 0.10 |
| 合计 | 100 | 1.00 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|0<x≤3} | B. | {x|1≤x≤3} | C. | {x|0≤x≤3} | D. | {x|1<x≤3} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{5}$ | D. | 5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com