分析 观察已知式子的规律,并改写形式,归纳可得N(n,k)=$\frac{k-2}{2}$n2+$\frac{4-k}{2}$n,把n=20,k=15代入可得答案.
解答 解:原已知式子可化为:N(n,3)=$\frac{1}{2}$n2+$\frac{1}{2}$n=$\frac{3-2}{2}{n}^{2}+\frac{4-3}{2}n$,
N(n,4)=n2=$\frac{4-2}{2}{n}^{2}+\frac{4-4}{2}n$,
N(n,5)=$\frac{3}{2}$n2-$\frac{1}{2}$n=$\frac{5-2}{2}{n}^{2}+\frac{4-5}{2}n$,
N(n,6)=2n2-n=$\frac{6-2}{2}{n}^{2}+\frac{4-6}{2}n$,
由归纳推理可得N(n,k)=$\frac{k-2}{2}$n2+$\frac{4-k}{2}$n,
故N(20,15)=$\frac{15-2}{2}×{20}^{2}+\frac{4-15}{2}×20$=2490,
故答案为:2490
点评 归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | $\frac{π}{2}$ | C. | π | D. | $\frac{3π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com