精英家教网 > 高中数学 > 题目详情

【题目】将函数 图象上所有点的横坐标缩短为原来的 ,纵坐标不变,再向右平移 个单位长度,得到函数y=g(x)的图象,则下列说法正确的是(
A.函数g(x)的一条对称轴是
B.函数g(x)的一个对称中心是
C.函数g(x)的一条对称轴是
D.函数g(x)的一个对称中心是

【答案】C
【解析】解:将函数 图象上所有点的横坐标缩短为原来的 , 可得y=2sin(2x+ )的图象,
然后纵坐标不变,再向右平移 个单位长度,
得到函数y=g(x)=2sin(2x﹣ + )=2cos2x的图象,
令x= ,求得g(x)=0,
可得( ,0)是g(x)的一个对称中心,故排除A;
令x= ,求得g(x)=﹣1,
可得x= 是g(x)的图象的一条对称轴,故排除B,故C正确;
令x= ,求得g(x)= ,可得x= 不是g(x)的图象的对称中心,故排除D,
故选:C.
【考点精析】解答此题的关键在于理解函数y=Asin(ωx+φ)的图象变换的相关知识,掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知曲线C的参数方程为 (α为参数),以直角坐标系原点为极点,x轴正半轴为极轴建立极坐标系.
(1)求曲线C的极坐标方程,并说明其表示什么轨迹.
(2)若直线的极坐标方程为sinθ﹣cosθ= ,求直线被曲线C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,g(x)=af(x)﹣|x﹣1|.
(Ⅰ)当a=0时,若g(x)≤|x﹣2|+b对任意x∈(0,+∞)恒成立,求实数b的取值范围;
(Ⅱ)当a=1时,求g(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果对一切实数x、y,不等式 ﹣cos2x≥asinx﹣ 恒成立,则实数a的取值范围是(
A.(﹣∞, ]
B.[3,+∞)
C.[﹣2 ,2 ]
D.[﹣3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+1|+|x﹣2|,不等式f(x)≥t对x∈R恒成立.
(1)求t的取值范围;
(2)记t的最大值为T,若正实数a,b满足a2+b2=T,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中, ,其面积为 ,则tan2Asin2B的最大值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,过椭圆 右焦点的直线 交椭圆C于M,N两点,P为M,N的中点,且直线OP的斜率为
(Ⅰ)求椭圆C的方程;
(Ⅱ)设另一直线l与椭圆C交于A,B两点,原点O到直线l的距离为 ,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设向量 =(1,﹣2), =(a,﹣1), =(﹣b,0),其中O为坐标原点,a>0,b>0,若A、B、C三点共线,则 的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是等比数列,an>0,a3=12,且a2 , a4 , a2+36成等差数列.
(1)求数列{an}的通项公式;
(2)设{bn}是等差数列,且b3=a3 , b9=a5 , 求b3+b5+b7+…+b2n+1

查看答案和解析>>

同步练习册答案