精英家教网 > 高中数学 > 题目详情
18.己知直线l:Ax+By+C=0(A,B不全为0),点P(x0,y0)在l上,则l的方程可化为(  )
A.A(x+x0)+B(y+y0)+C=0B.A(x+x0)+B(y+y0)=0C.A(x-x0)+B(y-y0)+C=0D.A(x-x0)+B(y-y0)=0

分析 将点P坐标依次代入选项验证即可得出答案.

解答 解:∵点P(x0,y0)在l上,
∴Ax0+By0+C=0;
将点P(x0,y0)代入选项A得:2Ax0+2By0+C=0,与已知矛盾;
将点P(x0,y0)代入选项B得:2Ax0+2By0=0,与已知矛盾;
将点P(x0,y0)代入选项C得:C=0,与已知矛盾;
将点P(x0,y0)代入选项D得:0=0,恒成立.
故选:D.

点评 本题考查了直线方程与直线上的点的关系.是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系xOy中,已知点A(2,0),B(0,2),△ABO(O为坐标原点)的外接圆记为圆P.
(1)求圆P的方程;
(2)若直线y+1=k(x+1)与圆P有公共点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.化简:$\frac{cos(x-3π)si{n}^{2}(x-5π)}{cos(-x-5π)sin(-x)cos(\frac{3π}{2}-x)}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若a>0,且a≠1时,若ax=N,则x=logaN,反之成立吗?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=$\sqrt{lo{g}_{{\;}_{\frac{1}{3}}tanx}}$的定义域是(  )
A.(0,$\frac{π}{4}$]B.(2kπ,2kπ+$\frac{π}{4}$],k∈ZC.(kπ,kπ+$\frac{π}{4}$],k∈ZD.(kπ-$\frac{π}{2}$,kπ+$\frac{π}{4}$],k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知x3-x7=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+…+a8(x-1)7,则a3=(  )
A.35B.36C.-34D.-33

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设角α=-$\frac{35}{6}$π,则$\frac{2sin(π+α)cos(π-α)-cos(π+α)}{1+si{n}^{2}α+sin(π-α)-co{s}^{2}(π+α)}$的值等于$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知平面直角坐标系中,直线l的参数方程为$\left\{\begin{array}{l}{x=4+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t是参数),以O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C:ρ=2cosθ.
(1)求曲线C的直角坐标系方程和直线l的普通方程;
(2)直线l和x轴交于点A,点B是曲线C上的动点,求AB的中点D到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图在三棱锥S-ABC中,△ABC是边长为2的正三角形,平面SAC⊥平面ABC,SA=SC=$\sqrt{2}$,M为AB的中点.
(I)证明:AC⊥SB;
(Ⅱ)求点B到平面SCM的距离.

查看答案和解析>>

同步练习册答案