【题目】已知函数
且
.
(1)当
时,求函数
的单调区间与极值;
(2)当
时,
恒成立,求
的取值范围.
科目:高中数学 来源: 题型:
【题目】下列四个结论:
①若α、β为第一象限角,且α>β,则sinα>sinβ
②函数y=|sinx|与y=|tanx|的最小正周期相同
③函数f(x)=sin(x+
)在[﹣
,
]上是增函数;
④若函数f(x)=asinx﹣bcosx的图象的一条对称轴为直线x=
,则a+b=0.
其中正确结论的序号是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点A(x1 , f(x1)),B(x2 , f(x2))是函数f(x)=2sin(ωx+φ)
图象上的任意两点,且角φ的终边经过点
,若|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为
.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递增区间;
(3)当
时,不等式mf(x)+2m≥f(x)恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
,焦点为
,点
在抛物线
上,且
到
的距离比
到直线
的距离小1.
(1)求抛物线
的方程;
(2)若点
为直线
上的任意一点,过点
作抛物线
的切线
与
,切点分别为
,求证:直线
恒过某一定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面内一动点
与两定点
和
连线的斜率之积等于
.
(Ⅰ)求动点
的轨迹
的方程;
(Ⅱ)设直线
:
(
)与轨迹
交于
、
两点,线段
的垂直平分线交
轴于点
,当
变化时,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
的焦点为
,准线为
,抛物线上一点
的横坐标为1,且到焦点
的距离为2.
(1)求抛物线
的方程;
(2)设
是抛物线上异于原点
的两个不同点,直线
和
的倾斜角分别为
和
,当
变化且
为定值
时,证明直线
恒过定点,并求出该定点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com