精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线的焦点为,准线为,抛物线上一点的横坐标为1,且到焦点的距离为2.

(1)求抛物线的方程;

(2)设是抛物线上异于原点的两个不同点,直线的倾斜角分别为,当变化且为定值时,证明直线恒过定点,并求出该定点的坐标.

【答案】(1);(2).

【解析】试题分析:(1)由抛物线的定义求解即可;

(2)设点,设直线的方程分别为与抛物线联立求交点,用坐标表示斜率,斜率表示正切研究即可.

试题解析:

(1)由抛物线的定义知,点到焦点的距离等于到准线的距离,所以.故抛物线的标准方程为.

(2)设点,由题意得 (否则,不满足),且

设直线的方程分别为

联立解得;联立,解得.

则由两点式得直线的方程为.

化简得.①

因为,且,

可得.②

将②代人①,化简得

,令,得.

所以直线恒过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在一次抽样调查中测得样本的6组数据,得到一个变量关于的回归方程模型,其对应的数值如下表:

2

3

4

5

6

7

(1)请用相关系数加以说明之间存在线性相关关系(当时,说明之间具有线性相关关系);

(2)根据(1)的判断结果,建立关于的回归方程并预测当时,对应的值为多少(精确到).

附参考公式:回归方程中斜率和截距的最小二乘法估计公式分别为:

,相关系数公式为:.

参考数据:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为实数)的图像在点处的切线方程为.

(1)求实数的值及函数的单调区间;

(2)设函数,证明时, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】传承传统文化再掀热潮,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏。将中学组和大学组的参赛选手按成绩分为优秀、良好、一般三个等级,随即从中抽取了100名选手进行调查,下面是根据调查结果绘制的选手等级人数的条形图.

(Ⅰ)若将一般等级和良好等级合称为合格等级,根据已知条件完成下面的列联表,并据此资料你是否有95%的把握认为选手成绩“优秀”与文化程度有关?

注:其中.

(Ⅱ)在优秀等级的选手中取6名,依次编号为1,2,3,4,5,6,在良好等级的选手中取6名,依次编号为1,2,3,4,5,6,在选出的6名优秀等级的选手中任取一名,记其编号为,在选出的6名良好等级的选手中任取一名,记其编号为,求使得方程组有唯一一组实数解的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的单调区间与极值;

(2)当时, 恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C ab>0)的焦距为,且椭圆C过点A1 ),

(Ⅰ)求椭圆C的方程;

(Ⅱ)若O是坐标原点,不经过原点的直线L:y=kx+m与椭圆交于两不同点P(x1,y1),Q(x2,y2),且y1y2=k2x1x2,求直线L的斜率k;

(Ⅲ)在(Ⅱ)的条件下,求△OPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:区域A是正方形OABC(含边界),区域B是三角形ABC(含边界)。

(Ⅰ)向区域A随机抛掷一粒黄豆,求黄豆落在区域B的概率;

(Ⅱ)若x,y分别表示甲、乙两人各掷一次骰子所得的点数,求点(xy)落在区域B的概率;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足an+1= an+t,a1= (t为常数,且t≠ ).
(1)证明:{an﹣2t}为等比数列;
(2)当t=﹣ 时,求数列{an}的前几项和最大?
(3)当t=0时,设cn=4an+1,数列{cn}的前n项和为Tn , 若不等式 ≥2n﹣7对任意的n∈N*恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是等差数列,是等比数列,且,则下列结论正确的是( )

A. B.

C. D. ,使得

查看答案和解析>>

同步练习册答案