精英家教网 > 高中数学 > 题目详情
16.设命题p:-1<log${\;}_{\frac{1}{2}}$x<0,q:2x>1,则p是q成立的是(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

分析 分别求出关于p,q的不等式,求出x的范围,结合集合的包含关系以及充分必要条件的定义判断即可.

解答 解:由-1<log${\;}_{\frac{1}{2}}$x<0,
得:1<x<2,
故p:1<x<2;
由2x>1,得:x>0,
故q:x>0,
则p是q成立的充分必要条件,
故选:A.

点评 本题考查了充分必要条件,考查集合的包含关系,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知x>0,y>0,且x+2y=xy,若x+2y>m2+2m恒成立,则xy的最小值为8,实数m的取值范围为(-4,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x3-3ax2+3bx的图象与直线12x+y-1=0相切于点(1,-11).
(1)求a,b的值;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在平面区域M={(x,y)|$\left\{\begin{array}{l}{y≥x}\\{x≥0}\\{x+y≤2}\end{array}\right.$}内随机取一点P,则点P在圆x2+y2=2内部的概率(  )
A.$\frac{π}{8}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.集合A={(x,y)|y=a},集合B={(x,y)|y=bx+1,b≠1},若集合A∩B=∅,则实数a的取值范围是(  )
A.RB.(-∞,1)C.(1,+∞)D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知全集U={x∈N*||x|≤5},A={2,4,5},B={1,3,5},则∁U(A∪B)等于(  )
A.B.{5}C.{1,3}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若曲线y=1+logax(a>0且a≠1)在点(1,1)处的切线经过坐标原点,则a=e.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设集合A={y|y=x2-2x+1,0≤x≤3},集合B={x|x2-(2m-1)x+m(m-1)≤0}.已知命题p:x∈A,命题q:x∈B,且命题p是命题q的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.$\frac{\sqrt{3}tan12°-3}{sin12°(4cos{\;}^{2}12°-2)}$=-4$\sqrt{3}$.

查看答案和解析>>

同步练习册答案