【题目】己知函数y=f(x)在R上单调递增,函数y=f(x+1)的图象关于点(﹣1,0)对称,f(﹣1)=﹣2,则满足﹣2≤f(lgx﹣1)≤2的x的取值范围是( )
A.
B.
C.
D.![]()
【答案】C
【解析】
根据y=f(x+1)的图象关于点(﹣1,0)对称,即可得出f(x)是奇函数,从而根据f(﹣1)=﹣2得出f(1)=2,从而根据﹣2≤f(lgx﹣1)≤2得出f(﹣1)≤f(lgx﹣1)≤f(1),再根据f(x)在R上单调递增即可得出﹣1≤lgx﹣1≤1,解出x的范围即可.
∵y=f(x+1)的图象关于点(﹣1,0)对称,
∴y=f(x)的图象关于原点对称,
∴函数f(x)为奇函数,且f(﹣1)=﹣2,
∴f(1)=2,
∴由﹣2≤f(lgx﹣1)≤2得,f(﹣1)≤f(lgx﹣1)≤f(1),且f(x)在R上单调递增,
∴﹣1≤lgx﹣1≤1,即0≤lgx≤2,解得1≤x≤100,
∴x的取值范围是[1,100].
故选:C.
科目:高中数学 来源: 题型:
【题目】定义:若各项为正实数的数列
满足
,则称数列
为“算术平方根递推数列”.
已知数列
满足
且
点
在二次函数
的图象上.
(1)试判断数列![]()
是否为算术平方根递推数列?若是,请说明你的理由;
(2)记![]()
,求证:数列
是等比数列,并求出通项公式
;
(3)从数列
中依据某种顺序自左至右取出其中的项
,把这些项重新组成一个新数列
:
.若数列
是首项为
、公比为
的无穷等比数列,且数列
各项的和为
,求正整数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中已知椭圆
过点
,其左、右焦点分别为
,离心率为
.
(1)求椭圆E的方程;
(2)若A,B分别为椭圆E的左、右顶点,动点M满足
,且MA交椭圆E于点P.
(i)求证:
为定值;
(ii)设PB与以PM为直径的圆的另一交点为Q,问:直线MQ是否过定点,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知各项都是正数的数列
的前
项和为
,且
,数列
满足
,
.
(1)求数列
、
的通项公式;
(2)设数列
满足
,求和
;
(3)是否存在正整数
,
,
,使得
,
,
成等差数列?若存在,求出所有满足要求的
,
,
,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)的定义域I=(﹣∞,0)∪(0,+∞),在(0,+∞)上为增函数,且x1,x2∈I,恒有f(x1x2)=f(x1)+f(x2).
(1)求证:f(x)是偶函数:
(2)若f(m)﹣f(2m+1)<3m2+4m+1,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面角坐标系
中,以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,已知曲线
的极坐标方程为
,将曲线
向左平移
个单位长度得到曲线
.
(1)求曲线
的参数方程;
(2)已知
为曲线
上的动点,
两点的极坐标分别为
,求
的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com