【题目】如图,在
中,
,且D为
的中点.
![]()
(1)求
的值;
(2)若
,
,
的角平分线
交
于E,求
及
的面积.
【答案】(1)
(2)
,![]()
【解析】
(1)由D为AC的中点,可得S△ABC=2S△BCD,进而利用三角形的面积公式即可求解
的值.
(2)设BD=x,则AB=2x,在△ABC,△BCD中,利用余弦定理可得
,解得x2
,可求cos∠DCB的值,利用角平分线的性质可求
,可得S△CED
S△BCD,利用三角形的面积公式求得S△BCD的值,即可求解S△CED的值.
解:(1)∵S△ABC
ABBCsin∠ABC,S△BCD
BDBCsin∠DBC,
∵D为AC的中点,
∴S△ABC=2S△BCD,即
ABBCsin∠ABC=2
BDBCsin∠DBC,
∵sin∠ABC=sin∠DBC,
∴
.
(2)设BD=x,则AB=2x,
在△ABC中,cos∠ACB
,
在△BCD中,cos∠DCB
,
∴
,解得x2
,则cos∠DCB
,
∵∠ACB的角平分线为CE,
∴E到DC,BC的距离相等,则
,
∴S△CED
S△BCD,
∴S△BCD
BCDCsin∠DCB
4
,
∴S△CED
.
![]()
科目:高中数学 来源: 题型:
【题目】己知函数y=f(x)在R上单调递增,函数y=f(x+1)的图象关于点(﹣1,0)对称,f(﹣1)=﹣2,则满足﹣2≤f(lgx﹣1)≤2的x的取值范围是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4―4:坐标系与参数方程]
在直角坐标系xOy中,曲线C的参数方程为
(θ为参数),直线l的参数方程为
.
(1)若a=1,求C与l的交点坐标;
(2)若C上的点到l的距离的最大值为
,求a.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】几位大学生响应国家的创业号召,开发了
三款软件,为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动,这三款软件的激活码分别为下面数学问题的三个答案:已知数列
,其中第一项是
,接下来的两项是
,再接下来的三项是
,以此类推,试根据下列条件求出三款软件的激活码
(1)A款应用软件的激活码是该数列中第四个三位数的项数的平方
(2)B款应用软件的激活码是该数列中第一个四位数及其前所有项的和
(3)C款应用软件的激活码是满足如下条件的最小整数
:①
;②该数列的前
项和为2的整数幂
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某园林单位准备绿化一块直径为BC的半圆形空地,△ABC外的地方种草,△ABC的内接正方形PQRS为一水池,其余的地方种花.若BC=a,∠ABC=
,设△ABC的面积为S1,正方形的面积为S2.
![]()
(1)用a,
表示S1和S2;
(2)当a固定,
变化时,求
取最小值时的角
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某公园有三个警卫室
、
、
有直道相连,
千米,
千米,
千米.
(1)保安甲沿
从警卫室
出发行至点
处,此时
,求
的直线距离;
(2)保安甲沿
从警卫室
出发前往警卫室
,同时保安乙沿
从警卫室
出发前往警卫室
,甲的速度为1千米/小时,乙的速度为2千米/小时,若甲乙两人通过对讲机联系,对讲机在公园内的最大通话距离不超过3千米,试问有多长时间两人不能通话?(精确到0.01小时)
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的右焦点为
,过点
的直线(不与
轴重合)与椭圆
相交于
,
两点,直线
:
与
轴相交于点
,过点
作
,垂足为D.
(1)求四边形
(
为坐标原点)面积的取值范围;
(2)证明直线
过定点
,并求出点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 下列命题正确的个数是( )
①命题“x0∈R,
+1>3x0”的否定是“x∈R,x2+1≤3x”;
②“函数f(x)=cos2ax-sin2ax的最小正周期为π”是“a=1”的必要不充分条件;
③x2+2x≥ax在x∈[1,2]上恒成立(x2+2x)min≥(ax)max在x∈[1,2]上恒成立;
④“平面向量a与b的夹角是钝角”的充要条件是“a·b<0”.
A.1B.2
C.3D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com