科目:高中数学 来源: 题型:解答题
已知数列{an}满足:a1=,=,anan+1<0(n≥1,n∈N+),数列{bn}满足:bn=-(n≥1,n∈N+).
(1)求数列{an},{bn}的通项公式.
(2)证明:数列{bn}中的任意三项不可能成等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=|x-a|.
(1)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;
(2)在(1)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=|x+3|+|x-a|(a>0).
(1)当a=4时,已知f(x)=7,求x的取值范围;
(2)若f(x)≥6的解集为{x|x≤-4或x≥2},求a的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com