精英家教网 > 高中数学 > 题目详情

已知数列的前项和为,且,数列满足,且.
(1)求数列,的通项公式;
(2)设,求数列的前项和

(1).. (2)

解析试题分析:(1)由 ,得.
明确是等比数列,公比为2,首项,得到.
,得是等差数列,公差为2. 可得.
(2)由  利用“分组求和法”.
试题解析:(1)当;             1分
时, ,∴.           2分
是等比数列,公比为2,首项, ∴.            3分
,得是等差数列,公差为2.                   4分
又首项,∴.                 6分
(2)                  8分
                    10分
.                       12分
考点:等差数列、等比数列的通项公式及其求和公式,“分组求和法”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

是首项为,公差为的等差数列(d≠0),是其前项和.记bn=,
,其中为实数.
(1) 若,且成等比数列,证明:Snk=n2Sk(k,n∈N+);
(2) 若是等差数列,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若数列的前项和满足,等差数列满足.
(1)求数列的通项公式;
(2)设,求数列的前项和为.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列是等差数列,且.
(1)求数列的通项公式;
(2)令,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,数列满足
(1)求数列的通项公式;
(2)对,设,若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和为,若成等比数列,且时,
(1)求证:当时,成等差数列;
(2)求的前n项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是公比为的等比数列,且成等差数列.
⑴求的值;
⑵设是以为首项,为公差的等差数列,求的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}是首项为1,公差为d的等差数列,数列{bn}是首项为1,公比为q(q>1)的等比数列.
(1)若a5=b5,q=3,求数列{an·bn}的前n项和;
(2)若存在正整数k(k≥2),使得ak=bk.试比较an与bn的大小,并说明理由..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知公差不为0的等差数列{an},a1=1,且a2a4-2,a6成等比数列.
(1)求数列{an}的通项公式;
(2)已知数列{bn}的通项公式是bn=2n-1,集合A={a1a2,…,an,…},B={b1b2b3,…,bn,…}.将集合AB中的元素按从小到大的顺序排成一个新的数列{cn},求数列{cn}的前n项和Sn.

查看答案和解析>>

同步练习册答案