精英家教网 > 高中数学 > 题目详情

已知是公比为的等比数列,且成等差数列.
⑴求的值;
⑵设是以为首项,为公差的等差数列,求的前项和.

;⑵

解析试题分析:⑴要求公比,得建立关于的方程式.所以根据等比数列中,及成等差数列,利用等差中项解关于的方程;
⑵要求等差数列的前项和,根据得求通项公式,利用等差数列即可.
试题解析:⑴根据以及成等差数列有:
  或(舍去);
⑵根据等差数列中 ,有:
所以等差数列的前项和为.
考点:等差数列通项公式,前项和公式,等比数列通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列{}的前n项和 (n为正整数)。
(1)令,求证数列{}是等差数列,并求数列{}的通项公式;
(2)令,求并证明:<3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是各项均不为零的)项等差数列,且公差.
(1)若,且该数列前项和最大,求的值;
(2)若,且将此数列删去某一项后得到的数列(按原来的顺序)是等比数列,求的值;
(3)若该数列中有一项是,则数列中是否存在不同三项(按原来的顺序)为等比数列?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和为,且,数列满足,且.
(1)求数列,的通项公式;
(2)设,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了保障幼儿园儿童的人身安全,国家计划在甲、乙两省试行政府规范购置校车方案,计划若干时间内(以月为单位)在两省共新购1000辆校车.其中甲省采取的新购方案是:本月新购校车10辆,以后每月的新购量比上一月增加50%;乙省采取的新购方案是:本月新购校车40辆,计划以后每月比上一月多新购m辆.
(1)求经过n个月,两省新购校车的总数S(n);
(2)若两省计划在3个月内完成新购目标,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an},其前n项和为Sn.
(1)若对任意的n∈N,a2n-1,a2n+1,a2n组成公差为4的等差数列,且a1=1,=2013,求n的值;
(2)若数列是公比为q(q≠-1)的等比数列,a为常数,求证:数列{an}为等比数列的充要条件为q=1+.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列{an}前三项之和为-3,前三项积为8.
(1)求等差数列{an}的通项公式;
(2)若a2,a3,a1成等比数列,求数列{|an|}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列{an}中,a2+a4=10,a5=9,数列{bn}中,b1=a1,bn+1=bn+an.
(1)求数列{an}的通项公式,写出它的前n项和Sn.
(2)求数列{bn}的通项公式.
(3)若cn=,求数列{cn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}为等差数列,若<-1,且它们的前n项和Sn有最大值,求使得Sn<0的n的最小值.

查看答案和解析>>

同步练习册答案