精英家教网 > 高中数学 > 题目详情
1.求函数$f(x)=tan(\frac{πx}{2}-\frac{π}{3})$的对称中心(  )
A.$(\frac{2}{3}π+kπ,0)$B.$(\frac{2}{3}π+2kπ,0)$C.$(\frac{2}{3}+2k,0)$D.$(\frac{2}{3}+k,0)$

分析 根据正切函数的对称坐标求解即可.

解答 解:函数$f(x)=tan(\frac{πx}{2}-\frac{π}{3})$,
根据正切函数的对称坐标,
可得:$\frac{1}{2}πx-\frac{π}{3}=\frac{1}{2}kπ$,(k∈Z),
解得:x=k$+\frac{2}{3}$,(k∈Z).
所以函数$f(x)=tan(\frac{πx}{2}-\frac{π}{3})$的对称中心为($k+\frac{2}{3}$,0).
故选D.

点评 本题考查了正切函数的对称坐标求法.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知数列{an}是等差数列,a3=8,a4=4,则前n项和Sn的最大值是(  )
A.20B.40C.36D.44

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知a,b,c分别是△ABC的内角A,B,C所对的边,bcosC=3acosB-ccosB.
(Ⅰ)求cosB;
(Ⅱ)若△ABC的面积是$2\sqrt{2}$,且$b=2\sqrt{2}$,求a和c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=mlnx+x2-5x的图象在点(1,f(1))处的切线的倾斜角为$\frac{3π}{4}$,则实数m的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知数列{an}和{bn}的通项公式分别是an=$\frac{a{n}^{2}+3}{b{n}^{2}-2n+2}$,bn=b-a($\frac{1}{3}$)n-1,其中a、b是实常数,若$\underset{lim}{x→∞}$an=3,$\underset{lim}{x→∞}$bn=-$\frac{1}{4}$,且a、b、c成等差数列,则c的值是$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知集合A={a,b,c,d},集合B={b,c,d,e},则A∩B={b,c,d}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知幂函数$f(x)={x^{-\;\frac{1}{2}{p^2}+p+\frac{3}{2}}}(p∈Z)$在(0,+∞)上是增函数,且在其定义域内是偶函数.
(1)求p的值,并写出相应的函数f(x)
(2)对于(1)中求得的函数f(x),设函数g(x)=(2q-1)f(x)+x+1,问是否存在实数q,使得g(x)在区间(-∞,-4]上是减函数,且在(-4,0)上是增函数?若存在,请求出q值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知椭圆$\frac{{y}^{2}}{12}+\frac{{x}^{2}}{8}=1$,F1,F2为其焦点,P为椭圆上一点,且∠F1PF2=60°,△PF1F2的面积为$\frac{8\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.以抛物线y=$\frac{1}{4}$x2焦点为圆心,且与双曲线x2-y2=1渐近线相切的圆的方程(  )
A.(x-1)2+y2=$\frac{1}{2}$B.x2+(y-1)2=$\frac{1}{2}$C.(x+1)2+y2=$\frac{1}{4}$D.x2+(y+1)2=$\frac{1}{4}$

查看答案和解析>>

同步练习册答案