分析 (Ⅰ)由正弦定理,三角形内角和定理,三角函数恒等变换的应用化简已知可得sinA=3sinAcosB,结合sinA≠0,可求cosB的值.
(Ⅱ)由三角形面积公式可求ac=6,利用余弦定理可求a2+c2=12,联立即可解得a,c的值.
解答 (本题满分为12分)
解:(Ⅰ)由正弦定理得sinBcosC=3sinAcosB-sinCcosB,
即sinBcosC+sinCcosB=3sinAcosB,…(2分)
所以sin(B+C)=3sinAcosB,
又sin(B+C)=sin(π-A)=sinA.
所以sinA=3sinAcosB,
因为sinA≠0,
所以cosB=$\frac{1}{3}$;…(6分)
(Ⅱ)由$\frac{1}{2}acsinB=2\sqrt{2}$,
由(Ⅰ)知cosB=$\frac{1}{3}$,可得:$sinB=\frac{{2\sqrt{2}}}{3}$,
所以ac=6,…(8分)
又因为b2=a2+c2-2accosB,即8=a2+c2-4,
所以a2+c2=12,②,
由①②式解得a=c=$\sqrt{6}$.…(12分)
点评 本题主要考查了正弦定理,三角形内角和定理,三角函数恒等变换的应用,三角形面积公式,余弦定理在解三角形中的应用,考查了转化思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | -200 | B. | -100 | C. | 200 | D. | 100 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-2] | B. | (-∞,-2) | C. | [-6,+∞) | D. | [-6,-2] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(\frac{2}{3}π+kπ,0)$ | B. | $(\frac{2}{3}π+2kπ,0)$ | C. | $(\frac{2}{3}+2k,0)$ | D. | $(\frac{2}{3}+k,0)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,$\frac{1}{2}$) | B. | (-1,1) | C. | (-2,$\frac{1}{2}$) | D. | (-1,2) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com