精英家教网 > 高中数学 > 题目详情
10.点P从点O出发,按逆时针方向沿周长为l的图形运动一周,O,P两点连线的距离y与点P走过的路程x的函数关系如图,那么点P所走的图形是(  )
A.B.C.D.

分析 根据O,P两点连线的距离y与点P走过的路程x的函数图象,由图象可知函数值随自变量的变化成轴对称性并且变化圆滑.由此即可排除A、C.D.

解答 解:观察函数的运动图象,可以发现两个显著特点:
①点P运动到周长的一半时,OP最大;
②点P的运动图象是抛物线.
设点M为周长的一半,
A.当点P在线段OA上运动时,y=x,其图象是一条线段,不符合条件,

B.满足条件.

C.当点P在线段OA上运动时,y=x,其图象是一条线段,不符合条件,

D.OM≤OP,不符合条件①,并且OP的距离不是对称变化的,因此排除选项D.

故选:B.

点评 本题考查函数图象的识别和判断,考查对于运动问题的深刻理解,解题关键是认真分析函数图象的特点.考查学生分析问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.函数f(x)=x2+ax+b,其中a∈R,b∈R且(b+4)2-a2=4,已知对任意的x∈R不等式f(x)≥-2恒成立.
(1)求实数a,b的值;
(2)若函数g(x)=$\left\{\begin{array}{l}{f(x)+x+4,x<f(x)}\\{f(x)-x,x≥f(x)}\end{array}\right.$,求g(x)的值域;
(3)是否存在实数m,n使得不等式m≤f(x)≤n的解集为[m,n]?若存在,求出m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设Sn为数列{an}的前n项和,且Sn=n2,数列{bn}为等比数列.已知a1b1+a2b2+a3b3+…+anbn=(n-1)•3n+1+3.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设(an+1)•log3bn+2•cn=1,求证:数列{cn}的前n项和Tn<$\frac{3}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在(x3+$\frac{1}{{x}^{2}}$)n的展开式中,若其展开式存在常数项,求n的最小正整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\left\{\begin{array}{l}{x+1,0≤x<1}\\{{2}^{x-1}-1,1≤x<3}\end{array}\right.$,若存在m,n,当0≤m<n<3时,有f(m)=f(n),则nf(m)的取值范围是(  )
A.[1,3)B.[1,2log23+2)C.[2,3)D.[2,2log23+2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}满足a1=2,an+1-an=2(n∈N*),数列{bn}满足b1=4,b3=14,且数列{bn-an}是各项均为正数的等比数列.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)令cn=bn-2n,求数列{$\frac{1}{{c}_{n}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知复数z=2i(1-i)(i为虚数单位),z的共轭复数为$\overline{z}$,则$z+\overline{z}$=(  )
A.4iB.-4iC.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若x,y满足约束条件$\left\{\begin{array}{l}x+y≥0\\ x-y≥-1\\ 2x-y≤2\end{array}\right.$,则目标函数z=x-2y的最小值是(  )
A.-5B.$-\frac{3}{2}$C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知f(α)=$\frac{tan(π-α)sin(-2π-α)cos(6π-α)}{sin(α+\frac{3}{2}π)cos(α-\frac{1}{2}π)}$
(1)化简f(α);
(2)若sinα=-$\frac{2}{3}$,α∈[一π,-$\frac{π}{2}$],求f(α)的值.

查看答案和解析>>

同步练习册答案