精英家教网 > 高中数学 > 题目详情
15.已知数列{an}满足a1=2,an+1-an=2(n∈N*),数列{bn}满足b1=4,b3=14,且数列{bn-an}是各项均为正数的等比数列.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)令cn=bn-2n,求数列{$\frac{1}{{c}_{n}}$}的前n项和Tn

分析 (I)利用等差数列与等比数列的通项公式即可得出.
(II)利用等比数列的通项公式前n项和公式即可得出.

解答 解:(I)数列{an}满足a1=2,an+1-an=2(n∈N*),∴an=2+2(n-1)=2n.
数列{bn}满足b1=4,b3=14,且数列{bn-an}是各项均为正数的等比数列,设其公比为q>0.
b3-a3=(b1-a1)q2,即14-6=(4-2)q2,解得q=2.
∴bn-an=2×2n-1,可得bn=2n+2n
(II)cn=bn-2n=2n
∴$\frac{1}{{c}_{n}}$=$(\frac{1}{2})^{n}$.
∴数列{$\frac{1}{{c}_{n}}$}的前n项和Tn=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$=1-$\frac{1}{{2}^{n}}$.

点评 本题考查了等差数列与等比数列的通项公式前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.在第二届乌镇互联网大会中,为了提高安保的级别同时又为了方便接待,现将其中的五个参会国的人员安排酒店住宿,这五个参会国要在a、b、c三家酒店选择一家,且这三家至少有一个参会国入住,则这样的安排方法共有(  )
A.96种B.124种C.130种D.150种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某企业生产甲、乙两种产品.已知每生产1000千克甲产品需要原料3吨,劳动力成本5000元;每生产1000千克乙产品需要原料2吨,劳动力成本10000元.又知生产出甲产品1000千克可获利6000元,生产出乙产品1000千克可获利8000元.现在该企业由于受原料和资金条件限制,只能提供30吨原料和11万元资金,在这种条件下应生产甲、乙产品各多少千克才能使总利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.中国天气网2016年3月4日晚六时通过手机发布的3月5日通州区天气预报的折线图(如图),其中上面的折线代表可能出现的最高气温,下面的折线代表可能出现的最低气温.
(Ⅰ)指出最高气温与最低气温的相关性;
(Ⅱ)比较最低气温与最高气温方差的大小(结论不要求证明);
(Ⅲ)在[8:00,23:00]内每个整点时刻的温差(最高气温与最低气温的差)依次记为t1,t2,t3,…,t16,求在连续两个时刻的温差中恰好有一个时刻的温差不小于3°的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.点P从点O出发,按逆时针方向沿周长为l的图形运动一周,O,P两点连线的距离y与点P走过的路程x的函数关系如图,那么点P所走的图形是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.实数x,y满足条件$\left\{\begin{array}{l}2x-y≥0\\ x+y-4≥0\\ x≤3.\end{array}\right.$,则$\frac{y^2}{x^2}$的取值范围为(  )
A.[4,+∞)B.$[\frac{1}{3},2]$C.[0,4]D.$[\frac{1}{9},4]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某高级中学共有学生3200人,其中高二级与高三级各有学生1000人,现采用分层抽样的方法,抽取容量为160的样本,则应抽取的高一级学生人数为60.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=x2-x-$\frac{4x}{x-1}$(x<0),g(x)=x2+bx-2(x>0),b∈R,若f(x)图象上存在A,B两个不同的点与g(x)图象上A′,B′两点关于y轴对称,则b的取值范围为(  )
A.(-4$\sqrt{2}$-5,+∞)B.(4$\sqrt{2}$-5,+∞)C.(-4$\sqrt{2}$-5,1)D.(4$\sqrt{2}$-5,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.过点P(2,-1)且与向量$\overrightarrow{a}$=(-2,3)平行的直线方程为2x+3y-1=0.

查看答案和解析>>

同步练习册答案