精英家教网 > 高中数学 > 题目详情
直线l经过抛物线y2=4x的焦点,且与抛物线交于A,B两点,若AB的中点横坐标为3,则线段AB的长为(  )
A、5B、6C、7D、8
考点:抛物线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:分别过点A,B作抛物线准线的垂线,垂足分别为M,N,由抛物线定义,得|AB|=|AF|+|BF|=|AM|+|BN|,由此能求出线段AB的长.
解答:解:设抛物线y2=4x的焦点为F,准线为l0,C是AB的中点,
分别过点A,B作直线l0的垂线,垂足分别为M,N,
由抛物线定义,
得|AB|=|AF|+|BF|=|AM|+|BN|
=xA+
p
2
+xB+
p
2
=xA+xB+p=2xC+p=8.
故选:D.
点评:本题考查抛物线的弦长的求法,是中档题,解题时要熟练掌握抛物线的简单性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

点M在z轴上,它与经过坐标原点且方向向量为
s
=(1,-1,1)的直线l的距离为
6
,则点M的坐标是(  )
A、(0,0,±2)
B、(0,0,±3)
C、(0,0,±
3
D、(0,0,±1)

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的偶函数,且当x≥0时,f(x)=ex.若对任意的x∈[a,a+1],不等式f(x+a)≥f2(x)恒成立,则实数a的最大值是(  )
A、-
3
2
B、-
2
3
C、-
3
4
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线C:y2=2px(p>0)的焦点为F,A,B是抛物线上互异的两点,直线AB的斜率存在,线段AB的垂直平分线交x轴于点D(a,0)(a>0),n=|
AF
|+|
BF
|,则(  )
A、p,n,a成等差数列
B、p,a,n成等差数列
C、p,a,n成等比数列
D、p,n,a成等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线y2=16x的焦点为F,经过点P(1,0)的直线l与抛物线交于A、B两点,且2
BP
=
PA
,则|AF|+4|BF|=(  )
A、18B、20C、24D、26

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线y2=16x的准线与x轴交于F1,以F1,F2为焦点,离心率为2的双曲线的两条准线之间的距离等于(  )
A、4B、2C、8D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线C:y2=8x的焦点为F,准线为直线l,过焦点F且倾斜角为θ(θ≠
π
2
)的直线交抛物线于A,B两点,给出下列命题:
①|AB|=
8
cos2θ

1
|FA|
+
1
|FB |
=
1
4

③以AB为直径的圆与抛物线的准线相切;
④设点B在直线l上的射影为B1,则点A、O、B1三点共线.
其中正确的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线C1:y2=2px(p>0)与双曲线C2
x2
a2
-
y2
b2
=1(a>0,b>0)交于A,B两点,C1与C2的两条渐近线分别交于异于原点的两点C,D,且AB,CD分别过C2,C1的焦点,则
|AB|
|CD|
=(  )
A、
5
2
B、
6
2
C、
5
D、
6

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)的值域是[
1
2
,4],则函数F(x)=f(x)+
1
f(x)
的值域是(  )
A、[
1
2
,4]
B、[
5
2
17
4
]
C、[2,
17
4
]
D、[4,
17
4
]

查看答案和解析>>

同步练习册答案