精英家教网 > 高中数学 > 题目详情
18.${∫}_{-2}^{-1}$($\sqrt{-{x}^{2}-2x}$+x2)dx=$\frac{π}{4}$+$\frac{7}{3}$.

分析 先将y=$\sqrt{-x^2-2x}$化为圆的标准方程,再结合几何意义求定积分.

解答 解:记f(x)=$\sqrt{-x^2-2x}$,g(x)=x2,x∈[-2,-1],
∵y=f(x)=$\sqrt{-x^2-2x}$=$\sqrt{1-(x+1)^2}$,平方得,(x+1)2+y2=1(y≥0),
∴f(x)的图象为以(-1,0)为圆心,以1为半径的圆的上半部分,
所以,${∫}_{-2}^{-1}$f(x)dx表示$\frac{1}{4}$圆的面积,其值为$\frac{π}{4}$,即${∫}_{-2}^{-1}$f(x)dx=$\frac{π}{4}$,
又因为${∫}_{-2}^{-1}$g(x)dx=$\frac{1}{3}$x3${|}_{-2}^{-1}$=$\frac{7}{3}$,
因此,原式=${∫}_{-2}^{-1}$f(x)dx+${∫}_{-2}^{-1}$g(x)dx=$\frac{π}{4}$+$\frac{7}{3}$,
故填:$\frac{π}{4}$+$\frac{7}{3}$.

点评 本题主要考查了运用数形结合的方法解决定积分问题,涉及圆的标准方程,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知x>0,y>0,且x+2y=1,则$\frac{2}{x}$+$\frac{1}{y}$的最小值为(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知$\overrightarrow{a}$=(0,-2$\sqrt{3}}$),$\overrightarrow b$=(1,$\sqrt{3}}$),则$\overrightarrow{a}$在$\overrightarrow b$上的正射影的数量为(  )
A.$\sqrt{3}$B.3C.-$\sqrt{3}$D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.a,b,c为三个人,命题P:“如果b的年龄不是最大的,那么a的年龄最小”和命题Q:“如果c的年龄不是最小的,那么a的年龄最大”都是真命题,则a,b,c的年龄大小顺序是(  )
A.b>a>cB.a>c>bC.c>b>aD.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.计算:$\underset{lim}{n→∞}$$\frac{1+\frac{1}{3}+\frac{1}{9}+…+\frac{1}{{3}^{n-1}}}{1+\frac{1}{2}+\frac{1}{4}+…+\frac{1}{{2}^{n-1}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知二次函数f(x)=ax2+bx+c(a、b、c∈R)满足:f(2)=2,f(-2)=0.
(1)求实数b的值;
(2)若对任意实数x,都有f(x)≥x成立,求函数f(x)的表达式;
(3)在(2)的条件下,设g(x)=f(x)-$\frac{m}{2}$x,x∈[0,+∞),若g(x)图象上的点都位于直线y=$\frac{1}{4}$的上方,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=sinωx(ω>0).
(1)当ω=2时,写出由y=f(x)的图象向右平移$\frac{π}{6}$个单位长度得到的图象所对应的函数解析式;
(2)若y=f(x)图象过点$(\frac{2π}{3},0)$,且在区间$(0,\frac{π}{3})$上是增函数,求ω的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.记函数f(x)=ex的图象为C,函数g(x)=kx-k的图象记为l.
(1)若直线l是曲线C的一条切线,求实数k的值.
(2)当x∈(1,3)时,图象C恒在l上方,求实数k的取值范围.
(3)若图象C与l有两个不同的交点A、B,其横坐标分别是x1、x2,设x1<x2,求证:x1x2<x1+x2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列各组中的函数相等的是(  )
A.f(x)=$\sqrt{{x}^{2}}$,g(x)=($\sqrt{x}$)2B.f(x)=|x|,g(x)=$\sqrt{{t}^{2}}$
C.f(x)=$\frac{{x}^{2}-1}{x-1}$,g(x)=x+1D.f(x)=$\sqrt{x+1}-\sqrt{x-1}$,g(x)=$\sqrt{{x}^{2}-1}$

查看答案和解析>>

同步练习册答案