精英家教网 > 高中数学 > 题目详情
设函数F(x)=f(x)-ag(x)(a为常数),f(x)=
ex
x2
,g(x)=
2
x
+lnx,(e是自然对数的底数,e=2.71828).
(Ⅰ)求曲线y=g(x)在点(1,g(1))处的切线方程;
(Ⅱ)当a≤0时,求函数F(x)的最大值和最小值;
(Ⅲ)若函数F(x)在(0,2)内存在两个极值点,求a的取值范围.
考点:利用导数研究曲线上某点切线方程,利用导数求闭区间上函数的最值
专题:导数的综合应用
分析:(Ⅰ)求出函数g(x)的导函数,得到函数在x=1时的导数,再求出g(1)的值,由直线方程的点斜式求得曲线y=g(x)在点(1,g(1))处的切线方程;
(Ⅱ)求出函数F(x)的导函数,由a≤0求得导函数的零点,得到原函数的极值点,从而求得函数F(x)的极小值,也是最小值;
(Ⅲ)由函数F(x)在(0,2)内存在两个极值点,得其导函数在(0,2)上有两个零点,由此得到不等式组
lna<2
t(lna)=elna-alna<0
t(2)=e2-2a>0
,求解不等式组得答案.
解答: 解:(Ⅰ)g(x)=
2
x
+lnx,则g(x)=-
2
x2
+
1
x
=
x-2
x2

∴g′(1)=-1,
又g(1)=2,
∴曲线y=g(x)在点(1,g(1))处的切线方程为y-2=-1×(x-1).
即x+y-3=0;
(Ⅱ)F(x)=f(x)-ag(x)=
ex
x2
-a(
2
x
+lnx),
F(x)=
exx2-2x•ex
x4
-a(-
2
x2
+
1
x
)
=
x(x-2)(ex-ax)
x4
(x>0).
∵a≤0,
∴当x∈(0,2)时,F′(x)<0,函数F(x)为减函数,在x∈(2,+∞)上F′(x)>0,函数F(x)为增函数.
∴当x=2时,函数有最小值为F(2)=
e2
4
-a(1+ln2)

(Ⅲ)由(Ⅱ)知,F(x)=
exx2-2x•ex
x4
-a(-
2
x2
+
1
x
)
=
x(x-2)(ex-ax)
x4

要使函数F(x)在(0,2)内存在两个极值点,则
方程ex-ax=0在(0,2)上有两个不等式实数根,
令t(x)=ex-ax,
则t′(x)=ex-a,
当a≤0时,t′(x)>0,不满足题意,
当a>0时,由则t′(x)=ex-a=0,得x=lna,
由x→0时,t(x)→1,
∴要使函数t(x)在(0,2)上有两个不同的零点,则
lna<2
t(lna)=elna-alna<0
t(2)=e2-2a>0
,解得:e<a<
e2
2

∴若函数F(x)在(0,2)内存在两个极值点,则a的取值范围是(e,
e2
2
)
点评:本题考查了利用导数研究过曲线上某点处的切线方程,考查了利用导数求函数的最值,训练了函数零点的判断方法,考查了数学转化思想方法,是高考试卷中的压轴题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sin(ωx+φ)(其中ω>0|φ|<
π
2
)图象相邻对称轴的距离为
π
2
,一个对称中心为(-
π
6
,0),为了得到g(x)=cosωx的图象,则只要将f(x)的图象(  )
A、向右平移
π
6
个单位
B、向右平移
π
12
个单位
C、向左平移
π
6
个单位
D、向左平移
π
12
个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系中,直线2x-y-1=0的斜率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn,a3=5,S6=36,
(1)求数列{an}的通项公式;
(2)设bn=2an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+ax-lnx.
(1)若a=1,试求函数f(x)的单调区间;
(2)令g(x)=
f(x)
ex
,若函数g(x)在区间(0,1]上是减函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3x2-4,x>0
2
,x=0
-3x2+3,x<0
,那么f{f[f(-1)]}=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-
1
x

(1)画出函数f(x)在定义域内的图象
(2)用定义证明函数f(x)在(0,+∞)上为增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是矩形,AB=4,AD=2,点P在底面的射影Q在CD上,且PQ=
15
,DQ=1.M为PC的中点.
(Ⅰ)证明:AD⊥平面PCD;
(Ⅱ)求直线AQ与平面MBD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的通项公式an=n2+2n,则数列{
1
an
}的前10项和为(  )
A、
175
132
B、
175
264
C、
132
175
D、
264
175

查看答案和解析>>

同步练习册答案