精英家教网 > 高中数学 > 题目详情

定义在R上的偶函数f(x)满足f(x+1)=数学公式,设a=f(数学公式),b=f(数学公式),c=f(2数学公式),则a,b,c的大小关系是


  1. A.
    c<a<b
  2. B.
    b<a<c
  3. C.
    c<b<a
  4. D.
    a<b<c
A
分析:先根据条件求出函数的周期,然后根据周期和偶函数的性质将a、b、c转化到区间[-3,-2]上的函数值,然后根据函数的单调性可判定大小.
解答:∵f(x+1)=
∴f(x+2)==f(x)
则f(x)的周期为2,偶函数f(x)则f(-x)=f(x)
∴a=f()=f(-4)=f(-
b=f()=f(-
c=f(2)=f(-2
∵当x∈[-3,-2]时,f(x)=3x,则f(x)在[-3,-2]上单调递增,
而-3<-2<-<-<2
∴f(-2)<f(-)<f(-)即c<a<b
故选A.
点评:本题主要考查了函数的周期性,以及函数的奇偶性和单调性,同时考查了转化的数学思想,是一道综合题,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x)是最小正周期为π的周期函数,且当x∈[0,
π
2
]
时,f(x)=sinx,则f(
3
)
的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

7、定义在R上的偶函数f(x),当x≥0时有f(2+x)=f(x),且x∈[0,2)时,f(x)=2x-1,则f(2010)+f(-2011)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x),满足f(x+2)=f(x),且f(x)在[-3,-2]上是减函数,若α、β是锐角三角形中两个不相等的锐角,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x)满足f(x+1)=-f(x)且f(x)在[-1,0]上是增函数,给出下列四个命题:
①f(x)是周期函数;
②f(x)的图象关于x=l对称;
③f(x)在[l,2l上是减函数;
④f(2)=f(0),
其中正确命题的序号是
①②④
①②④
.(请把正确命题的序号全部写出来)

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知定义在R上的偶函数f(x).当x≥0时,f(x)=
-x+2x-1
且f(1)=0.
(Ⅰ)求函数f(x)的解析式并画出函数的图象;
(Ⅱ)写出函数f(x)的值域.

查看答案和解析>>

同步练习册答案