精英家教网 > 高中数学 > 题目详情
14.从集合$\left\{{2,3,4,\frac{2}{3}}\right\}$中取两个不同的数a,b,则logab>0的概率为$\frac{1}{2}$.

分析 (a,b)的取值共有4×3=12种取法.其中logab>0的只有6种:(2,3),(2,4),(3,4),(3,2),:(4,2),(4,3).即可得出.

解答 解:(a,b)的取值共有4×3=12种取法.其中logab>0的只有6种:(2,3),(2,4),(3,4),(3,2),:(4,2),(4,3).
∴logab>0的概率=$\frac{6}{12}$=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查了列举法、古典概率计算公式、对数函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.函数y=(x+1)0+ln(-x2-3x+4)的定义域为{x|-4<x<-1或-1<x<1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知定义在R上的函数f(x)满足f(1)=0,当x≠1时,f(x)=|ln|x-1||,设函数g(x)=f(x)-m(m为常数)的零点个数为n,则n的所有可能值构成的集合为(  )
A.{0,4}B.{3,4}C.{0,3,4}D.{0,1,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知向量$\overrightarrow{a}$=(-1,2),$\overrightarrow{b}$=(2,3),若m$\overrightarrow{a}$-n$\overrightarrow{b}$=(-5,-4),则m+n=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ex-ax,x∈R
(1)若a=2,求曲线f(x)在点(0,f(0))处的切线方程;
(2)当a>1时,求函数f(x)在[0,a]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.a是平面α外的一条直线,过a作平面β,使β∥α,这样的平面β(  )
A.只能作一个B.不存在C.至多可以作一个D.至少可以作一个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.四棱锥P-BCDE,底面BCDE为等腰梯形,CB∥DE,PO⊥底面BCDE,F为PB中点,O为BC中点,PO=$\sqrt{3}$,BC=4,DE=CD=BE=2
(1)求证:EF∥平面PCD;
(2)求平面POD与平面PBE所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知圆C1:x2+y2=4和圆C2:x2+y2-6x+8y+16=0,则这两个圆的公切线的条数为(  )
A.0B.1C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在等差数列{an}中,a16+a17+a18=a9=-36,其前n项和为Sn
(1)求Sn的最小值,并求出取Sn的最小值时n的值;
(2)求Tn=|a1|+|a2|+…+|an|.

查看答案和解析>>

同步练习册答案