精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
2
sin(x+
π
4
)-
1
3
sinx

(Ⅰ)求函数f(x)的定义域;
(Ⅱ)若f(x)=2,求sin2x的值.
(Ⅰ)由题意,sinx≠0,…(2分)
所以,x≠kπ(k∈Z).…(3分)
函数f(x)的定义域为{x|x≠kπ,k∈Z}.…(4分)
(Ⅱ)因为f(x)=2,所以
2
sin(x+
π
4
)-
1
3
=2sinx
,…(5分)
2
(
2
2
sinx+
2
2
cosx)-
1
3
 =2sinx
,…(7分)  cosx-sinx=
1
3
,…(9分)
将上式平方,得1-sin2x=
1
9
,…(12分)
所以sin2x=
8
9
.…(13分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2-xx+1

(1)求出函数f(x)的对称中心;
(2)证明:函数f(x)在(-1,+∞)上为减函数;
(3)是否存在负数x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x-1,x≤0
x
,x>0
,则f[f(-2)]=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函数f(x)的值域和最小正周期;
(2)当x∈[0,2π]时,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2-
ax+1
(a∈R)
的图象过点(4,-1)
(1)求a的值;
(2)求证:f(x)在其定义域上有且只有一个零点;
(3)若f(x)+mx>1对一切的正实数x均成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],则当x=
3
3
时,函数f(x)有最大值,最大值为
2
3
2
3

查看答案和解析>>

同步练习册答案