精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)= +log2(6﹣x)的定义域是(
A.{x|x>6}
B.{x|﹣3<x<6}
C.{x|x>﹣3}
D.{x|﹣3≤x<6}

【答案】D
【解析】解:要使函数 有意义,x+3≥0,且6﹣x>0 ∴|﹣3≤x<6
∴函数的定义域为:{x|﹣3≤x<6}
故答案选D.
【考点精析】利用函数的定义域及其求法和对数函数的定义域对题目进行判断即可得到答案,需要熟知求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零;对数函数的定义域范围:(0,+∞).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=AD=2,BC=1,CD=
(1)求证:平面PQB⊥平面PAD;
(2)若PM=3MC,求二面角M﹣BQ﹣C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小李从网上购买了一件商品,快递员计划在下午5:00-6:00之间送货上门,已知小李下班到家的时间为下午5:30-6:00.快递员到小李家时,如果小李未到家,则快递员会电话联系小李.若小李能在10分钟之内到家,则快递员等小李回来;否则,就将商品存放在快递柜中.则小李需要去快递柜收取商品的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[2019·朝鲜中学]在如图所示的程序框图中,有这样一个执行框,其中的函数关系式为,程序框图中的为函数的定义域.

(1)若输入,请写出输出的所有的值;

(2)若输出的所有都相等,试求输入的初始值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,点坐标是,曲线的方程为;以极点为坐标原点,极轴为轴的正半轴建立平面直角坐标系,斜率是的直线经过点

(1)写出直线的参数方程和曲线的直角坐标方程;

(2)求证直线和曲线相交于两点,并求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,,

时,求函数的最大值和最小值;

⑵求的取值范围,使上是单调函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)在定义域(0,+∞)上为增函数,且满足f(xy)=f(x)+f(y),f(3)=1
(1)求f(9),f(27)的值
(2)解不等式f(x)+f(x﹣8)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中为常数.已知销售价格为7元/千克时,每日可售出该商品11千克.

(Ⅰ)求的值;

(Ⅱ)若该商品的成本为5元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=aR)是奇函数.

1)求实数a的值;

2)判断并证明fx)在R上的单调性.

查看答案和解析>>

同步练习册答案