精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)在定义域(0,+∞)上为增函数,且满足f(xy)=f(x)+f(y),f(3)=1
(1)求f(9),f(27)的值
(2)解不等式f(x)+f(x﹣8)<2.

【答案】
(1)解:f(9)=f(3)+f(3)=2,

f(27)=f(9)+f(3)=3


(2)解:∵f(x)+f(x﹣8)=f[x(x﹣8)]<f(9)

而函数f(x)是定义在(0,+∞)上为增函数,

即原不等式的解集为(8,9)


【解析】(1)从分利用条件f(xy)=f(x)+f(y),f(3)=1,(2)利用条件:函数f(x)在定义域(0,+∞)上为增函数,列出不等式组,解出此不等式组.
【考点精析】本题主要考查了函数单调性的性质的相关知识点,需要掌握函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是菱形,且.

是棱的中点,平面与棱交于点.

1)求证:

2)若,且平面平面,求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数g(x)=ax2﹣2ax+1+b(a>0).
(1)在区间[2,3]上的最大值为4,最小值为1,求实数a,b的值;
(2)若b=1,对任意x∈[1,2),g(x)≥0恒成立,则a的范围;
(3)若b=1,对任意a∈[2,3],g(x)≥0恒成立,则x的范围;
(4)在(1)的条件下记f(x)=g(|x|),若不等式f(log2k)>f(2)成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= +log2(6﹣x)的定义域是(
A.{x|x>6}
B.{x|﹣3<x<6}
C.{x|x>﹣3}
D.{x|﹣3≤x<6}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设圆C满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1,在满足条件①、②的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=lnx+x2﹣bx.
(1)若函数f(x)在其定义域内是增函数,求b的取值范围;
(2)当b=﹣1时,设g(x)=f(x)﹣2x2 , 求证函数g(x)只有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一个偶数组成的数阵排列如下:

2 4 8 14 22 32 …

6 10 16 24 34 … …

12 18 26 36 … … …

20 28 38 … … … …

30 40 … … … … …

42 … … … … … …

… … … … … … …

则第20行第4列的数为( )

A. 546 B. 540 C. 592 D. 598

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数

(Ⅰ)讨论的单调性;

(Ⅱ)若有三个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|2x﹣a|, (Ⅰ)若a=4,求f(x)≤x的解集;
(Ⅱ)若f(x+1)>|2﹣a|对x∈(0,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案