【题目】如图,在四棱锥
中,平面
平面
,
,
,
.
![]()
(1)求证:
;
(2)若
为线段
上的一点,
,
,
,求平面
与平面
所成锐二面角的余弦值.
【答案】(1)证明见解析(2)![]()
【解析】
(1)设
交
于点
,证明
平面
内的两条相交直线即可得到线面垂直,再由线面垂直的性质,可证明线线垂直;
(2)找到三条两两互相垂直的直线,以
为原点,以射线
为
轴,
轴,
轴正半轴建立空间直角坐标系,求出平面
的法向量
,平面
的法向量
,求法向量夹角的余弦值,即可求得答案.
设
交
于点
,![]()
,
,所以
,所以
,在
中,
![]()
且
,得
,即
,
又平面![]()
平面
,平面![]()
平面
,
平面
,
所以
平面
,
又
平面
,所以![]()
![]()
(2)平面![]()
平面
,平面![]()
平面
,
平面
,
,所以
平面
,
以
为原点,以射线
为
轴,
轴,
轴正半轴建立空间直角坐标系,
,
,
,
,
,
,![]()
设平面
的法向量为
,则
,
取
,得![]()
设平面
的法向量为
,
则
,取
,得
,
设所求角为
,则
,
所求的锐二面角余弦值为![]()
科目:高中数学 来源: 题型:
【题目】某县畜牧技术员张三和李四
年来一直对该县山羊养殖业的规模进行跟踪调查,张三提供了该县某山羊养殖场年养殖数量
(单位:万只)与相应年份
(序号)的数据表和散点图(如图所示),根据散点图,发现y与x有较强的线性相关关系.
年份序号 |
|
|
|
|
|
|
|
|
|
年养殖山羊 |
|
|
|
|
|
|
|
|
|
![]()
(1)根据表中的数据和所给统计量,求
关于
的线性回归方程(参考统计量:
,
;
(2)李四提供了该县山羊养殖场的个数
(单位:个)关于
的回归方程
.
试估计:①该县第一年养殖山羊多少万只?
②到第几年,该县山羊养殖的数量与第一年相比缩小了?
附:回归直线方程的斜率和截距的最小二乘估计公式分别为:![]()
![]()
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
的参数方程为
(
,
为参数),曲线
的参数方程为
(
为参数),直线
与曲线
交于
,
两点.
(1)以坐标原点为极点,
轴正半轴为极轴建立极坐标系,求曲线
的极坐标方程;
(2)若
,点
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校高三年级有400名学生参加某项体育测试,根据男女学生人数比例,使用分层抽样的方法从中抽取了100名学生,记录他们的分数,将数据分成7组:
,整理得到如下频率分布直方图:
![]()
(1)若该样本中男生有55人,试估计该学校高三年级女生总人数;
(2)若规定小于60分为“不及格”,从该学校高三年级学生中随机抽取一人,估计该学生不及格的概率;
(3)若规定分数在
为“良好”,
为“优秀”.用频率估计概率,从该校高三年级随机抽取三人,记该项测试分数为“良好”或“优秀”的人数为X,求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
(
为参数),将曲线
上所有点横坐标缩短为原来的
,纵坐标不变,得到曲线
,过点
且倾斜角为
的直线
与曲线
交于
、
两点.
(1)求曲线
的参数方程和
的取值范围;
(2)求
中点
的轨迹的参数方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某服装加工厂为了提高市场竞争力,对其中一台生产设备提出了甲、乙两个改进方案:甲方案是引进一台新的生产设备,需一次性投资1000万元,年生产能力为30万件;乙方案是将原来的设备进行升级改造,需一次性投入700万元,年生产能力为20万件.根据市场调查与预测,该产品的年销售量的频率分布直方图如图所示,无论是引进新生产设备还是改造原有的生产设备,设备的使用年限均为6年,该产品的销售利润为15元/件(不含一次性设备改进投资费用).
![]()
(1)根据年销售量的频率分布直方图,估算年销量的平均数
(同一组中的数据用该组区间的中点值作代表);
(2)将年销售量落入各组的频率视为概率,各组的年销售量用该组区间的中点值作年销量的估计值,并假设每年的销售量相互独立.
①根据频率分布直方图估计年销售利润不低于270万元的概率:
②若以该生产设备6年的净利润的期望值作为决策的依据,试判断该服装厂应选择哪个方案.(6年的净利润=6年销售利润-设备改进投资费用)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】共享单车因绿色、环保、健康的出行方式,在国内得到迅速推广.最近,某机构在某地区随机采访了10名男士和10名女士,结果男士、女士中分别有7人、6人表示“经常骑共享单车出行”,其他人表示“较少或不选择骑共享单车出行”.
(1)从这些男士和女士中各抽取一人,求至少有一人“经常骑共享单车出行”的概率;
(2)从这些男士中抽取一人,女士中抽取两人,记这三人中“经常骑共享单车出行”的人数为
,求
的分布列与数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com