【题目】如图所示,圆锥SO的轴截面△SAB是边长为4的正三角形,M为母线SB的中点,过直线AM作平面β⊥面SAB,设β与圆锥侧面的交线为椭圆C,则椭圆C的短半轴长为( )
A.
B.
C.
D.
科目:高中数学 来源: 题型:
【题目】某工厂有25周岁以上(含25周岁)工人300名,25周岁以 下工人200名.为研究工人的日平均生产量是否与年龄有关.现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“ 25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组: , , , , 分别加以统计,得到如图所示的频率分布直方图.
附表:
P( ) | 0.100 | 0 .010 | 0.001 |
k | 2.706 | 6.635 | 10.828 |
,(其中 )
(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的频率.
(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成 的列联表,并判断是否有 的把握认为“生产能手与工人所在的年龄组有关”?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4―4:坐标系与参数方程]
在平面直角坐标系中,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系.已知直线的参数方程为;曲线的极坐标方程为;曲线的参数方程为(为参数).
(1)求直线的直角坐标方程、曲线的直角坐标方程和曲线的普通方程;
(2)若直线与曲线曲线在第一象限的交点分别为,求之间的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= +m为奇函数,m为常数.
(1)求实数m的值;
(2)判断并证明f(x)的单调性;
(3)若关于x的不等式f(f(x))+f(ma)<0有解,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直线AB经过☉O上的点C,并且OA=OB,CA=CB,☉O交直线OB于E,D两点,连接EC,CD.
(1)求证:直线AB是☉O的切线;
(2)若tan∠CED= ,☉O的半径为3,求OA的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,棱长为a的正方体ABCD﹣A1B1C1D1中,点M,N,E分别是棱A1B1 , A1D1 , C1D1的中点.
(1)过AM作一平面,使其与平面END平行(只写作法,不需要证明);
(2)在如图的空间直角坐标系中,求直线AM与平面BMND所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com