精英家教网 > 高中数学 > 题目详情

已知等比数列的各项均为正数,且成等差数列,成等比数列.
(1)求数列的通项公式;
(2)已知,记
,求证:

(1);(2)参考解析

解析试题分析:(1)又等比数列的各项均为正数,且成等差数列,成等比数列.
可得到两个等式,解方程组可得结论.
(2)由(1)可得数列的通项,即可计算,由于是一个复合的形式,所以先计算通项式.即可得到.又由于.即可得到结论.
试题解析:设等比数列的公比为,依题意可得解得.所以通项.
(2)由(1)得.所以.由.所以.所以即等价于证明..所以
考点:1.等差数列、等比数列的性质.2.数列的求和.3.数列与不等式的知识交汇.4.归纳递推的思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列的各项都为正数,
(1)若数列是首项为1,公差为的等差数列,求
(2)若,求证:数列是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

等差数列中,
(1)求的通项公式;
(2)设

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列中,已知.
(1)求证:是等差数列;
(2)求数列的通项公式及它的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列中的.
(1)求数列的通项公式;
(2)数列的前n项和为,求证:数列是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列中,,对任意的成等比数列,公比为成等差数列,公差为,且
(1)写出数列的前四项;
(2)设,求数列的通项公式;
(3)求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设各项均为正数的数列的前n项和为Sn,已知,且对一切都成立.
(1)若λ=1,求数列的通项公式;
(2)求λ的值,使数列是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知正项数列的前项和为,且满足:.
(1)求的通项公式;
(2)设,求的前项和
(3)在(2)的条件下,对任意都成立,求整数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列{an}的公差d=1,前n项和为Sn.
(1)若1,a1,a3成等比数列,求a1
(2)若S5>a1a9,求a1的取值范围.

查看答案和解析>>

同步练习册答案