精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+ax2-x+c,且a=f′(
2
3
)

(Ⅰ)求a的值;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)设函数g(x)=(f(x)-x3)•ex,若函数g(x)在x∈[-3,2]上单调递增,求实数c的取值范围.
(Ⅰ)由f(x)=x3+ax2-x+c,得f'(x)=3x2+2ax-1.
x=
2
3
时,得a=f ′(
2
3
)=3×(
2
3
)2+2f ′(
2
3
)×(
2
3
)-1

解之,得a=-1.…(4分)
(Ⅱ)因为f(x)=x3-x2-x+c.
从而f ′(x)=3x2-2x-1=3(x+
1
3
)(x-1)

f ′(x)=3x2-2x-1=3(x+
1
3
)(x-1)
=0,得x1=-
1
3
 ,x2=1

列表如下:
x (-∞,-
1
3
)
-
1
3
(-
1
3
,1)
1 (1,+∞)
f'(x) + 0 - 0 +
f(x) 有极大值 有极小值
所以f(x)的单调递增区间是(-∞ , -
1
3
)
和(1,+∞);
f(x)的单调递减区间是(-
1
3
 , 1)
.…(9分)
(Ⅲ)函数g(x)=(f(x)-x3)•ex=(-x2-x+c)•ex
有g'(x)=(-2x-1)ex+(-x2-x+c)ex=(-x2-3x+c-1)ex
因为函数在区间x∈[-3,2]上单调递增,
等价于h(x)=-x2-3x+c-1≥0在x∈[-3,2]上恒成立,
只要h(2)≥0,解得c≥11,
所以c的取值范围是c≥11.…(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案