精英家教网 > 高中数学 > 题目详情
14.函数$y=\frac{x^2}{x-1}({x<1})$的最大值为(  )
A.-1B.0C.1D.2

分析 根据基本不等式的性质求出函数的最大值即可.

解答 解:$y=\frac{x^2}{x-1}({x<1})$=$\frac{(x+1)(x-1)+1}{x-1}$
=(x+1)+$\frac{1}{x-1}$
=(x-1)+$\frac{1}{x-1}$+2
≤-2$\sqrt{(1-x)•\frac{1}{1-x}}$+2
=0,
当且仅当x=0时“=”成立,
故选:B.

点评 本题考查了基本不等式的性质,考查转化思想,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ax-lnx-1.
(1)若函数f(x)在区间[1,+∞)上递增,求实数a的取值范围;
(2)求证:$ln(n+2)<1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n+1}\;(n∈{N^*})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.以直角坐标系的原O为极点,x轴的正半轴为极轴建立极坐标系,且两个坐标系相等的单位长度,已知直线l的参数方程为$\left\{\begin{array}{l}x=1+2t\\ y=2+t\end{array}\right.(t$为参数),圆C的极坐标方程为ρ=2.
(Ⅰ)写出直线l的一般方程及圆C标准方程;
(Ⅱ)设P(-1,1),直线l和圆C相交于A,B两点,求||PA|-|PB||的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{x^2}{4}+\frac{y^2}{m}$=1(m>0).
(1)若m=2,求椭圆C的离心率及短轴长;
(2)如存在过点P(-1,0)的直线与椭圆C交于A,B两点,且OA⊥OB,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某学生通过计算发现:21-1=12能被12整除,32-1=2×22能被22整除,43-1=7×32能被32整除,由此猜想当n∈N*时,(n+1)n-1能够被n2整除.该学生的推理是(  )
A.类比推理B.归纳推理C.演绎推理D.逻辑推理

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若a,b∈R,下列命题正确的是(  )
A.若a>|b|,则a2>b2B.若|a|>b,则a2>b2C.若a≠|b|,则a2≠b2D.若a>b,则a-b<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|3$\overrightarrow{a}$-2$\overrightarrow{b}$|=$\sqrt{13}$,且$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为60°.
(1)求|$\overrightarrow{b}$|的值;
(2)求2$\overrightarrow{a}$-$\overrightarrow{b}$和$\overrightarrow{a}$-2$\overrightarrow{b}$夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.有这样一个有规律的步骤:对于数25,将组成它的数字和5分别取立方再求和为133,即23+53=133;对于133也做同样操作:13+33+33=55,如此反复操作,则第2017次操作后得到的数是(  )
A.25B.250C.55D.133

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,已知$A(\sqrt{3},3)$,AB边上的中线CM所在直线方程为$5\sqrt{3}x+9y-18=0$,∠B的角平分线BT所在直线的方程为y=1.求
(1)求顶点B的坐标;
(2)求△ABC的面积.

查看答案和解析>>

同步练习册答案