精英家教网 > 高中数学 > 题目详情
19.若a,b∈R,下列命题正确的是(  )
A.若a>|b|,则a2>b2B.若|a|>b,则a2>b2C.若a≠|b|,则a2≠b2D.若a>b,则a-b<0

分析 根据题意,由不等式的性质易得A正确,利用特殊值法分析可得B、C、D错误,即可得答案.

解答 解:根据题意,依次分析选项:
对于A、若a>|b|,则有|a|>|b|>0,则a2>b2,故A正确;
对于B、当a=1,b=-2时,a2<b2,故B错误;
对于C、当a=-1,b=1时,满足a≠|b|,但有a2=b2,故C错误;
对于D、若a>b,则a-b>0,故D错误;
故选:A.

点评 本题考查不等式的性质,注意不等式的性质中的条件限制.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知数列{an}满足an+1=2an,且${a_3}-{a_1}=2\sqrt{3}$,则$\frac{1}{a_1^2}+\frac{1}{a_2^2}+…+\frac{1}{a_n^2}$=(  )
A.$1-\frac{1}{4^n}$B.$\frac{1}{4}({4^n}-1)$C.$\frac{3}{2}(1-\frac{1}{2^n})$D.$\frac{1}{16}(1-\frac{1}{4^n})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设(x-2y)5(x+3y)4=a9x9+a8x8y+a7x7y2+…+a1xy8+a0y9,则a8=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知x,y为正实数,且满足(xy-1)2=(3y+2)(y-2),则x+$\frac{1}{y}$的最大值为2$\sqrt{2}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数$y=\frac{x^2}{x-1}({x<1})$的最大值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.对于任意实数a,b,若a>b,则下列不等式一定成立的是(  )
A.$\frac{1}{a}$<$\frac{1}{b}$B.a2>b2C.a3>b3D.$\frac{a}{b}$>$\frac{b}{a}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.对大于1的自然数 m的三次幂可用奇数进行以下形式的“分裂”:23$\left\{\begin{array}{l}{3}\\{5}\end{array}\right.$,33$\left\{\begin{array}{l}{7}\\{9}\\{11}\end{array}\right.$,43$\left\{\begin{array}{l}{13}\\{15}\\{17}\\{19}\end{array}\right.$,….仿此,若m3的“分裂数”中有一个是2017,则m的值为(  )
A.44B.45C.46D.47

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设a,b,c都是正实数,且a+b+c=1,则$({\frac{1}{a}-1})({\frac{1}{b}-1})({\frac{1}{c}-1})$的取值范围是(  )
A.[0,$\frac{1}{8}$)B.[8,+∞)C.[1,8)D.[$\frac{1}{8}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.将函数y=sin(2x+$\frac{π}{6}$)的图象向右平移$\frac{1}{2}$个最小正周期后,所得图象对应的函数为(  )
A.y=sin(2x-$\frac{5π}{6}$)B.y=sin(2x-$\frac{7π}{6}$)C.y=sin(2x-$\frac{π}{3}$)D.y=sin(2x+$\frac{2π}{3}$)

查看答案和解析>>

同步练习册答案