精英家教网 > 高中数学 > 题目详情
8.设a,b,c都是正实数,且a+b+c=1,则$({\frac{1}{a}-1})({\frac{1}{b}-1})({\frac{1}{c}-1})$的取值范围是(  )
A.[0,$\frac{1}{8}$)B.[8,+∞)C.[1,8)D.[$\frac{1}{8}$,1)

分析 根据a+b+c=1,得到$({\frac{1}{a}-1})({\frac{1}{b}-1})({\frac{1}{c}-1})$=$\frac{b+c}{a}$•$\frac{a+c}{b}$•$\frac{a+b}{c}$,根据基本不等式的性质求出其范围即可.

解答 解:∵a,b,c都是正实数,且a+b+c=1,
∴$({\frac{1}{a}-1})({\frac{1}{b}-1})({\frac{1}{c}-1})$
=($\frac{a+b+c}{a}-1$)($\frac{a+b+c}{b}$-1)($\frac{a+b+c}{c}$-1)
=$\frac{b+c}{a}$•$\frac{a+c}{b}$•$\frac{a+b}{c}$
≥$\frac{2\sqrt{bc}}{a}$•$\frac{2\sqrt{ac}}{b}$•$\frac{2\sqrt{ab}}{c}$
=8,
当且仅当a=b=c=$\frac{1}{3}$时“=”成立,
故选:B.

点评 本题考查了基本不等式的性质,考查转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=cosxcos(x+$\frac{π}{3}$).
(1)求f(x)在区间[0,$\frac{π}{2}$]上的值域;
(2)若f(θ)=$\frac{13}{20}$,-$\frac{π}{6}$<θ<$\frac{π}{6}$,求cos2θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若a,b∈R,下列命题正确的是(  )
A.若a>|b|,则a2>b2B.若|a|>b,则a2>b2C.若a≠|b|,则a2≠b2D.若a>b,则a-b<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.${({2{x^2}-\frac{1}{x}})^6}$的展开式中常数项为(  )
A.60B.-60C.80D.-80

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.有这样一个有规律的步骤:对于数25,将组成它的数字和5分别取立方再求和为133,即23+53=133;对于133也做同样操作:13+33+33=55,如此反复操作,则第2017次操作后得到的数是(  )
A.25B.250C.55D.133

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若x∈(1,+∞),则y=x$+\frac{4}{x-1}$的最小值是5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知二项式(x2-$\frac{1}{x}$)n的展开式的二项式系数之和为32,则展开式中含x项的系数是-10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在区间[-1,3]上随机取一个实数x,则x使不等式|x|≤2成立的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.连续掷一枚质地均匀的骰子4次,设事件A=“恰有2次正面朝上的点数为3的倍数”,则P(A)=$\frac{8}{27}$.

查看答案和解析>>

同步练习册答案