精英家教网 > 高中数学 > 题目详情
5.以直角坐标系的原O为极点,x轴的正半轴为极轴建立极坐标系,且两个坐标系相等的单位长度,已知直线l的参数方程为$\left\{\begin{array}{l}x=1+2t\\ y=2+t\end{array}\right.(t$为参数),圆C的极坐标方程为ρ=2.
(Ⅰ)写出直线l的一般方程及圆C标准方程;
(Ⅱ)设P(-1,1),直线l和圆C相交于A,B两点,求||PA|-|PB||的值.

分析 (Ⅰ)直线l的参数方程消去参数t,能求出直线l的一般方程;由ρ=2可得ρ2=4,由此能求出圆C的标准方程.
(Ⅱ)点P(-1,1)P在圆内,且直线l上,联立圆的方程和直线l的参数方程方程组,得5t2+8t+1=0,利用韦达定理、弦长公式,结合已知条件能求出||PA|-|PB||的值.

解答 解:(Ⅰ)∵直线l的参数方程为$\left\{\begin{array}{l}x=1+2t\\ y=2+t\end{array}\right.(t$为参数),
∴由直线l的参数方程消去参数t可得x-1=2(y-2),
化简并整理可得直线l的一般方程为x-2y+3=0,
∵圆C的极坐标方程为ρ=2,
∴由ρ=2可得ρ2=4,即x2+y2=4,
∴圆C的标准方程为x2+y2=4.
(Ⅱ)∵P(-1,1),|PC|=$\sqrt{1+1}$=$\sqrt{2}$<R=2,
点P(-1,1)代入直线l的方程,成立,
∴点P在圆内,且直线l上,
联立圆的方程和直线l的参数方程方程组$\left\{\begin{array}{l}{x^2}+{y^2}=4\\ x=1+2t,得5{t^2}+8t+1=0\\ y=2+t\end{array}\right.$,
设A(xA,yA),B(xB,yB),则${t_A}+{t_B}=-\frac{8}{5},{t_A}{t_B}=\frac{1}{5}>0$,
∴$({1+{t_A}})(1+{t_B})={t_A}{t_B}+{t_A}+{t_B}+1=\frac{1}{5}-\frac{8}{5}+1=-\frac{2}{5}<0$,
则$|{PA}|=\sqrt{{{({{x_A}+1})}^2}+{{({{y_A}-1})}^2}}=\sqrt{{{({2{t_A}+2})}^2}+{{({{t_A}+1})}^2}}=\sqrt{5}|{{t_A}+1}|$,
同理$|{PB}|=\sqrt{5}|{{t_B}+1}|$,
∴$|{|{PA}|-|{PB}|}|=\sqrt{5}|{{t_A}+1}|-|{{t_B}+1}|=\sqrt{5}|{{t_A}+{t_B}+2}|=\sqrt{5}|{-\frac{8}{5}+2}|=\frac{{2\sqrt{5}}}{5}$.

点评 本题考查直线的一般方程、圆的标准方程的求法,考查两线段之差的绝对值的求法,考查参数方程、直角坐标方程的互化、韦达定理、弦长公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取4%的学生进行调查,则样本容量和抽取的高中生近视人数分别为(  )
A.200,20B.400,40C.200,40D.400,20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.圆C:x2+y2-4x+2y=0的圆心坐标和半径分别为(  )
A.C(2,1),r=5B.C(2,-1),r=$\sqrt{5}$C.C(2,-1),r=5D.C(-2,1),r=$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.点P(8,-3)到直线5x+12y+9=0的距离是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆Ω:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),过点$Q(\frac{{\sqrt{2}}}{2},1)$作圆x2+y2=1的切线,切点分别为S,T,直线ST恰好经过椭圆Ω的右顶点和上顶点.
(Ⅰ)求椭圆Ω的方程;
(Ⅱ)如图,过椭圆Ω的右焦点F作两条互相垂直的弦AB,CD,设AB,CD的中点分别为M,N,证明:直线MN必过定点,并求此定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设(x-2y)5(x+3y)4=a9x9+a8x8y+a7x7y2+…+a1xy8+a0y9,则a8=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知变量x与y正相关,且由观测数据算得样本的平均数$\overline x=3,\overline y=3.5$,则由观测的数据所得的线性回归方程可能是(  )
A.$\hat y=-0.3x+4.4$B.$\hat y=-2x+9.5$C.$\hat y=2x-2.4$D.$\hat y=0.4x+2.3$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数$y=\frac{x^2}{x-1}({x<1})$的最大值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设x∈[0,π],则sinx<$\frac{1}{2}$的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案