20£®ÒÑÖªÍÖÔ²¦¸£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©£¬¹ýµã$Q£¨\frac{{\sqrt{2}}}{2}£¬1£©$×÷Ô²x2+y2=1µÄÇÐÏߣ¬Çеã·Ö±ðΪS£¬T£¬Ö±ÏßSTÇ¡ºÃ¾­¹ýÍÖÔ²¦¸µÄÓÒ¶¥µãºÍÉ϶¥µã£®
£¨¢ñ£©ÇóÍÖÔ²¦¸µÄ·½³Ì£»
£¨¢ò£©Èçͼ£¬¹ýÍÖÔ²¦¸µÄÓÒ½¹µãF×÷Á½Ìõ»¥Ïà´¹Ö±µÄÏÒAB£¬CD£¬ÉèAB£¬CDµÄÖеã·Ö±ðΪM£¬N£¬Ö¤Ã÷£ºÖ±ÏßMN±Ø¹ý¶¨µã£¬²¢Çó´Ë¶¨µã×ø±ê£®

·ÖÎö £¨¢ñ£©ÓÉÇеãÏÒ·½³ÌÖªÇÐÏß·½³ÌΪ$\frac{{\sqrt{2}}}{2}x+y=1$£¬Çó³öÉ϶¥µãµÄ×ø±êΪ£¨0£¬1£©£¬ÓÒ¶¥µãµÄ×ø±êΪ$£¨\sqrt{2}£¬0£©$£¬ÓÉ´ËÄÜÇó³öÍÖÔ²¦¸µÄ·½³Ì£®
£¨¢ò£©ÈôÖ±ÏßAB£¬CDбÂʾù´æÔÚ£¬ÉèÖ±ÏßAB£ºy=k£¨x-1£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÔòÖеã$M£¨\frac{{{x_1}+{x_2}}}{2}£¬k£¨\frac{{{x_1}+{x_2}}}{2}-1£©£©$£®ÓÉ$\left\{\begin{array}{l}y=k£¨x-1£©\\{x^2}+2{y^2}-2=0\end{array}\right.$µÃ£¨1+2k2£©x2-4k2x+2k2-2=0£¬ÓÉ´ËÀûÓøùµÄÅбðʽ¡¢Î¤´ï¶¨Àí£¬½áºÏÒÑÖªÌõ¼þÍÆµ¼³öÖ±ÏßMN¹ýµã$£¨\frac{2}{3}£¬0£©$£®

½â´ð ½â£º£¨¢ñ£©ÓÉÇеãÏÒ·½³ÌÖªÇÐÏß·½³ÌΪ$\frac{{\sqrt{2}}}{2}x+y=1$£¬Áîx=0£¬Ôòy=1£¬
ËùÒÔÉ϶¥µãµÄ×ø±êΪ£¨0£¬1£©£¬
ËùÒÔb=1£¬Áîy=0£¬Ôò$x=\sqrt{2}$£¬
ËùÒÔÓÒ¶¥µãµÄ×ø±êΪ$£¨\sqrt{2}£¬0£©$£¬
ËùÒÔ$a=\sqrt{2}$£¬ËùÒÔÍÖÔ²¦¸µÄ·½³ÌΪ$\frac{x^2}{2}+{y^2}=1$£®
Ö¤Ã÷£º£¨¢ò£©ÈôÖ±ÏßAB£¬CDбÂʾù´æÔÚ£¬
ÉèÖ±ÏßAB£ºy=k£¨x-1£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÔòÖеã$M£¨\frac{{{x_1}+{x_2}}}{2}£¬k£¨\frac{{{x_1}+{x_2}}}{2}-1£©£©$£®ÏÈ¿¼ÂÇk¡Ù0µÄÇéÐΣ®
ÓÉ$\left\{\begin{array}{l}y=k£¨x-1£©\\{x^2}+2{y^2}-2=0\end{array}\right.$µÃ£¨1+2k2£©x2-4k2x+2k2-2=0£¬
ÓÉÖ±ÏßAB¹ýµãF£¨1£¬0£©£¬¿ÉÖªÅбðʽ¡÷£¾0ºã³ÉÁ¢£¬
ÓÉΤ´ï¶¨Àí£¬µÃ${x_1}+{x_2}=\frac{{4{k^2}}}{{2{k^2}+1}}$£¬¹Ê$M£¨\frac{{2{k^2}}}{{2{k^2}+1}}£¬\frac{-k}{{2{k^2}+1}}£©$£¬
ͬÀí¿ÉµÃ$N£¨\frac{2}{{{k^2}+2}}£¬\frac{k}{{{k^2}+2}}£©$£®
Èô$\frac{2}{{{k^2}+2}}=\frac{{2{k^2}}}{{2{k^2}+1}}$£¬µÃk=¡À1£¬ÔòÖ±ÏßMNбÂʲ»´æÔÚ£¬
´ËʱֱÏßMN¹ýµã$£¨\frac{2}{3}£¬0£©$£®
Áíµ±MNбÂÊΪ0ʱ£¬Ö±ÏßMNÒ²¹ýµã$£¨\frac{2}{3}£¬0£©$£®
ÏÂÖ¤¶¯Ö±ÏßMN¹ý¶¨µã$P£¨\frac{2}{3}£¬0£©$£¬
${k_{MP}}=\frac{{\frac{-k}{{2{k^2}+1}}-0}}{{\frac{{2{k^2}}}{{2{k^2}+1}}-\frac{2}{3}}}=\frac{-k}{{6{k^2}-4{k^2}-2}}=\frac{k}{{2-2{k^2}}}$£¬
${k_{NP}}=\frac{{\frac{k}{{{k^2}+2}}-0}}{{\frac{2}{{{k^2}+2}}-\frac{2}{3}}}=\frac{k}{{6-2{k^2}-4}}=\frac{k}{{2-2{k^2}}}$£¬
¡àkMP=kNP£¬¼´Ö±ÏßMN¹ýµã$£¨\frac{2}{3}£¬0£©$£®

µãÆÀ ±¾Ì⿼²éÇúÏß·½³ÌµÄÇ󷨣¬¿¼²éÏÒ³¤µÄ×î´óÖµ¼°¶ÔÓ¦µÄÖ±Ïß·½³ÌµÄÇ󷨣¬¿¼²éÔ²×¶ÇúÏß¡¢Ö±Ïß·½³Ì¡¢Î¤´ï¶¨Àí¡¢¸ùµÄÅбðʽ¡¢ÏÒ³¤¹«Ê½µÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖªº¯Êý$f£¨x£©=sin£¨2x+\frac{¦Ð}{4}£©$£¬Ôòº¯Êýf£¨x£©Âú×㣨¡¡¡¡£©
A£®×îСÕýÖÜÆÚΪT=2¦ÐB£®Í¼Ïó¹ØÓÚµã$£¨\frac{¦Ð}{8}£¬0£©$¶Ô³Æ
C£®ÔÚÇø¼ä$£¨{0£¬\frac{¦Ð}{8}}£©$ÉÏΪ¼õº¯ÊýD£®Í¼Ïó¹ØÓÚÖ±Ïß$x=\frac{¦Ð}{8}$¶Ô³Æ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®´Ó1£¬2£¬3£¬¡­£¬9Õâ¾Å¸öÕûÊýÖÐͬʱȡËĸö²»Í¬µÄÊý£¬ÆäºÍΪżÊý£¬Ôò²»Í¬È¡·¨¹²ÓУ¨¡¡¡¡£©
A£®62B£®64C£®65D£®66

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªº¯Êýg£¨x£©=$\frac{1}{2}{x}^{2}$-a£¬h£¨x£©=2x•g£¨x£©+1£¬Èô¶ÔÈÎÒâx¡Ê£¨0£¬2]£¬²»µÈʽ|g£¨x£©|x-1¡Ü0ºã³ÉÁ¢£®
£¨1£©ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨2£©ÔÚÇø¼ä[t£¬t+1]ÉÏÂú×ã²»µÈʽ|h£¨x£©|¡Ý1µÄ½âÓÐÇÒÖ»ÓÐÒ»¸ö£¬ÇóʵÊýtµÄȡֵ·¶Î§£¨Ö±½Óд´ð°¸£¬²»±ØÐ´¹ý³Ì£©£»£¨3£©Èôf£¨x£©=h£¨x£©-x2+2x£¬ÊÔÅжÏÔÚÇø¼ä£¨0£¬m£©ÄÚÊÇ·ñ´æÔÚÒ»¸öʵÊýb£¬Ê¹µÃº¯Êýf£¨x£©µÄͼÏóÔÚx=b´¦µÄÇÐÏßµÄбÂʵÈÓÚm2-m-1£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªÔ²x2+y2=4¾­¹ý$¦Õ£º\left\{\begin{array}{l}{x^'}=x\\{y^'}=\frac{{\sqrt{3}}}{2}y\end{array}\right.$±ä»»ºóµÃÇúÏßC£®
£¨1£©ÇóCµÄ·½³Ì£»
£¨2£©ÈôP£¬QΪÇúÏßCÉÏÁ½µã£¬OÎª×ø±êÔ­µã£¬Ö±ÏßOP£¬OQµÄбÂÊ·Ö±ðΪk1£¬k2ÇÒ${k_1}{k_2}=-\frac{3}{4}$£¬ÇóÖ±ÏßPQ±»Ô²O£ºx2+y2=3½ØµÃÏÒ³¤µÄ×î´óÖµ¼°´ËʱֱÏßPQµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÔÖ±½Ç×ø±êϵµÄÔ­OΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇÒÁ½¸ö×ø±êϵÏàµÈµÄµ¥Î»³¤¶È£¬ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=1+2t\\ y=2+t\end{array}\right.£¨t$Ϊ²ÎÊý£©£¬Ô²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2£®
£¨¢ñ£©Ð´³öÖ±ÏßlµÄÒ»°ã·½³Ì¼°Ô²C±ê×¼·½³Ì£»
£¨¢ò£©ÉèP£¨-1£¬1£©£¬Ö±ÏßlºÍÔ²CÏཻÓÚA£¬BÁ½µã£¬Çó||PA|-|PB||µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®£¨3-x£©nµÄÕ¹¿ªÊ½Öи÷ÏîϵÊýºÍΪ64£¬ÔòÕ¹¿ªÊ½ÖÐx5ÏîµÄϵÊýΪ-18£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Ä³Ñ§Éúͨ¹ý¼ÆËã·¢ÏÖ£º21-1=12Äܱ»12Õû³ý£¬32-1=2¡Á22Äܱ»22Õû³ý£¬43-1=7¡Á32Äܱ»32Õû³ý£¬Óɴ˲ÂÏëµ±n¡ÊN*ʱ£¬£¨n+1£©n-1Äܹ»±»n2Õû³ý£®¸ÃѧÉúµÄÍÆÀíÊÇ£¨¡¡¡¡£©
A£®Àà±ÈÍÆÀíB£®¹éÄÉÍÆÀíC£®ÑÝÒïÍÆÀíD£®Âß¼­ÍÆÀí

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=ax3+bx+1£¬Èôf£¨a£©=8£¬Ôòf£¨-a£©=-6£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸