·ÖÎö £¨¢ñ£©ÓÉÇеãÏÒ·½³ÌÖªÇÐÏß·½³ÌΪ$\frac{{\sqrt{2}}}{2}x+y=1$£¬Çó³öÉ϶¥µãµÄ×ø±êΪ£¨0£¬1£©£¬ÓÒ¶¥µãµÄ×ø±êΪ$£¨\sqrt{2}£¬0£©$£¬ÓÉ´ËÄÜÇó³öÍÖÔ²¦¸µÄ·½³Ì£®
£¨¢ò£©ÈôÖ±ÏßAB£¬CDбÂʾù´æÔÚ£¬ÉèÖ±ÏßAB£ºy=k£¨x-1£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÔòÖеã$M£¨\frac{{{x_1}+{x_2}}}{2}£¬k£¨\frac{{{x_1}+{x_2}}}{2}-1£©£©$£®ÓÉ$\left\{\begin{array}{l}y=k£¨x-1£©\\{x^2}+2{y^2}-2=0\end{array}\right.$µÃ£¨1+2k2£©x2-4k2x+2k2-2=0£¬ÓÉ´ËÀûÓøùµÄÅбðʽ¡¢Î¤´ï¶¨Àí£¬½áºÏÒÑÖªÌõ¼þÍÆµ¼³öÖ±ÏßMN¹ýµã$£¨\frac{2}{3}£¬0£©$£®
½â´ð ½â£º£¨¢ñ£©ÓÉÇеãÏÒ·½³ÌÖªÇÐÏß·½³ÌΪ$\frac{{\sqrt{2}}}{2}x+y=1$£¬Áîx=0£¬Ôòy=1£¬
ËùÒÔÉ϶¥µãµÄ×ø±êΪ£¨0£¬1£©£¬
ËùÒÔb=1£¬Áîy=0£¬Ôò$x=\sqrt{2}$£¬
ËùÒÔÓÒ¶¥µãµÄ×ø±êΪ$£¨\sqrt{2}£¬0£©$£¬
ËùÒÔ$a=\sqrt{2}$£¬ËùÒÔÍÖÔ²¦¸µÄ·½³ÌΪ$\frac{x^2}{2}+{y^2}=1$£®
Ö¤Ã÷£º£¨¢ò£©ÈôÖ±ÏßAB£¬CDбÂʾù´æÔÚ£¬
ÉèÖ±ÏßAB£ºy=k£¨x-1£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÔòÖеã$M£¨\frac{{{x_1}+{x_2}}}{2}£¬k£¨\frac{{{x_1}+{x_2}}}{2}-1£©£©$£®ÏÈ¿¼ÂÇk¡Ù0µÄÇéÐΣ®
ÓÉ$\left\{\begin{array}{l}y=k£¨x-1£©\\{x^2}+2{y^2}-2=0\end{array}\right.$µÃ£¨1+2k2£©x2-4k2x+2k2-2=0£¬
ÓÉÖ±ÏßAB¹ýµãF£¨1£¬0£©£¬¿ÉÖªÅбðʽ¡÷£¾0ºã³ÉÁ¢£¬
ÓÉΤ´ï¶¨Àí£¬µÃ${x_1}+{x_2}=\frac{{4{k^2}}}{{2{k^2}+1}}$£¬¹Ê$M£¨\frac{{2{k^2}}}{{2{k^2}+1}}£¬\frac{-k}{{2{k^2}+1}}£©$£¬
ͬÀí¿ÉµÃ$N£¨\frac{2}{{{k^2}+2}}£¬\frac{k}{{{k^2}+2}}£©$£®
Èô$\frac{2}{{{k^2}+2}}=\frac{{2{k^2}}}{{2{k^2}+1}}$£¬µÃk=¡À1£¬ÔòÖ±ÏßMNбÂʲ»´æÔÚ£¬
´ËʱֱÏßMN¹ýµã$£¨\frac{2}{3}£¬0£©$£®
Áíµ±MNбÂÊΪ0ʱ£¬Ö±ÏßMNÒ²¹ýµã$£¨\frac{2}{3}£¬0£©$£®
ÏÂÖ¤¶¯Ö±ÏßMN¹ý¶¨µã$P£¨\frac{2}{3}£¬0£©$£¬
${k_{MP}}=\frac{{\frac{-k}{{2{k^2}+1}}-0}}{{\frac{{2{k^2}}}{{2{k^2}+1}}-\frac{2}{3}}}=\frac{-k}{{6{k^2}-4{k^2}-2}}=\frac{k}{{2-2{k^2}}}$£¬
${k_{NP}}=\frac{{\frac{k}{{{k^2}+2}}-0}}{{\frac{2}{{{k^2}+2}}-\frac{2}{3}}}=\frac{k}{{6-2{k^2}-4}}=\frac{k}{{2-2{k^2}}}$£¬
¡àkMP=kNP£¬¼´Ö±ÏßMN¹ýµã$£¨\frac{2}{3}£¬0£©$£®
µãÆÀ ±¾Ì⿼²éÇúÏß·½³ÌµÄÇ󷨣¬¿¼²éÏÒ³¤µÄ×î´óÖµ¼°¶ÔÓ¦µÄÖ±Ïß·½³ÌµÄÇ󷨣¬¿¼²éÔ²×¶ÇúÏß¡¢Ö±Ïß·½³Ì¡¢Î¤´ï¶¨Àí¡¢¸ùµÄÅбðʽ¡¢ÏÒ³¤¹«Ê½µÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ×îСÕýÖÜÆÚΪT=2¦Ð | B£® | ͼÏó¹ØÓÚµã$£¨\frac{¦Ð}{8}£¬0£©$¶Ô³Æ | ||
| C£® | ÔÚÇø¼ä$£¨{0£¬\frac{¦Ð}{8}}£©$ÉÏΪ¼õº¯Êý | D£® | ͼÏó¹ØÓÚÖ±Ïß$x=\frac{¦Ð}{8}$¶Ô³Æ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 62 | B£® | 64 | C£® | 65 | D£® | 66 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | Àà±ÈÍÆÀí | B£® | ¹éÄÉÍÆÀí | C£® | ÑÝÒïÍÆÀí | D£® | Âß¼ÍÆÀí |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com