15£®ÒÑÖªÔ²x2+y2=4¾­¹ý$¦Õ£º\left\{\begin{array}{l}{x^'}=x\\{y^'}=\frac{{\sqrt{3}}}{2}y\end{array}\right.$±ä»»ºóµÃÇúÏßC£®
£¨1£©ÇóCµÄ·½³Ì£»
£¨2£©ÈôP£¬QΪÇúÏßCÉÏÁ½µã£¬OÎª×ø±êÔ­µã£¬Ö±ÏßOP£¬OQµÄбÂÊ·Ö±ðΪk1£¬k2ÇÒ${k_1}{k_2}=-\frac{3}{4}$£¬ÇóÖ±ÏßPQ±»Ô²O£ºx2+y2=3½ØµÃÏÒ³¤µÄ×î´óÖµ¼°´ËʱֱÏßPQµÄ·½³Ì£®

·ÖÎö £¨1£©½«$\left\{\begin{array}{l}x=x'\\ y=\frac{2}{{\sqrt{3}}}y'\end{array}\right.$´úÈëx2+y2=4£¬ÄÜÇó³öÇúÏßCµÄ·½³Ì£»
£¨2£©ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬Ö±ÏßPQÓëÔ²O£ºx2+y2=3µÄ½»µãΪM£¬N£¬µ±Ö±ÏßPQ¡ÍxÖáʱ£¬ÇóµÃ|MN|=2£»µ±Ö±ÏßPQÓëxÖá²»´¹Ö±Ê±£¬ÉèÖ±ÏßPQµÄ·½³ÌΪy=kx+m£¬ÁªÁ¢$\left\{\begin{array}{l}y=kx+m£¬\;\;\\ \frac{x^2}{4}+\frac{y^2}{3}=1£¬\;\;\end{array}\right.$µÃ£¨4k2+3£©x2+8kmx+4m2-12=0£¬ÓÉ´ËÀûÓÃΤ´ï¶¨Àí¡¢¸ùµÄÅбðʽ¡¢ÏÒ³¤¹«Ê½£¬½áºÏÒÑÖªÌõ¼þÄÜÇó³öÖ±ÏßPQ±»Ô²O£ºx2+y2=3½ØµÃÏÒ³¤µÄ×î´óÖµ¼°¶ÔÓ¦ÓõÄÖ±ÏßPQµÄ·½³Ì£®

½â´ð ½â£º£¨1£©½«$\left\{\begin{array}{l}x=x'\\ y=\frac{2}{{\sqrt{3}}}y'\end{array}\right.$´úÈëx2+y2=4µÃ${x'^2}+\frac{4}{3}{y'^2}=4$£¬
»¯¼òµÃ$\frac{{{{x'}^2}}}{4}+\frac{{{{y'}^2}}}{3}=1$£¬
¼´$\frac{x^2}{4}+\frac{y^2}{3}=1$ΪÇúÏßCµÄ·½³Ì£®
£¨2£©ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬Ö±ÏßPQÓëÔ²O£ºx2+y2=3µÄ½»µãΪM£¬N£®
µ±Ö±ÏßPQ¡ÍxÖáʱ£¬Q£¨x1£¬-y1£©£¬
ÓÉ$\left\{\begin{array}{l}{k_1}\;•\;{k_2}=\frac{y_1}{x_1}\;•\;\frac{{-{y_1}}}{x_1}=-\frac{3}{4}£¬\;\;\\ \frac{x_1^2}{4}+\frac{y_1^2}{3}=1\end{array}\right.$µÃ$\left\{\begin{array}{l}{x_1}=\sqrt{2}£¬\;\;\\{y_1}=¡À\frac{{\sqrt{6}}}{2}\end{array}\right.$»ò$\left\{\begin{array}{l}{x_1}=-\sqrt{2}£¬\;\;\\{y_1}=¡À\frac{{\sqrt{6}}}{2}£¬\;\;\end{array}\right.$
´Ëʱ¿ÉÇóµÃ$|MN|=2\sqrt{{{£¨\sqrt{3}£©}^2}-{{£¨\sqrt{2}£©}^2}}=2$£®
µ±Ö±ÏßPQÓëxÖá²»´¹Ö±Ê±£¬ÉèÖ±ÏßPQµÄ·½³ÌΪy=kx+m£¬
ÁªÁ¢$\left\{\begin{array}{l}y=kx+m£¬\;\;\\ \frac{x^2}{4}+\frac{y^2}{3}=1£¬\;\;\end{array}\right.$ÏûyµÃ£¨4k2+3£©x2+8kmx+4m2-12=0£¬
¡÷=64k2m2-4£¨4k2+3£©£¨4m2-12£©=48£¨4k2-m2+3£©£¬${x_1}+{x_2}=\frac{-8km}{{4{k^2}+3}}$£¬${x_1}{x_2}=\frac{{4{m^2}-12}}{{4{k^2}+3}}$£¬
ËùÒÔ${y_1}{y_2}=£¨k{x_1}+m£©£¨k{x_2}+m£©={k^2}{x_1}{x_2}+km£¨{x_1}+{x_2}£©+{m^2}={k^2}\frac{{4{m^2}-12}}{{4{k^2}+3}}+km\frac{-8km}{{4{k^2}+3}}+{m^2}$
=$\frac{{3{m^2}-12{k^2}}}{{4{k^2}+3}}$£¬
ÓÉ${k_1}\;•\;{k_2}=\frac{y_1}{x_1}\;•\;\frac{y_2}{x_2}=-\frac{3}{4}$µÃ$\frac{{\frac{{3{m^2}-12{k^2}}}{{4{k^2}+3}}}}{{\frac{{4{m^2}-12}}{{4{k^2}+3}}}}=\frac{{3{m^2}-12{k^2}}}{{4{m^2}-12}}=-\frac{3}{4}$£¬${m^2}=2{k^2}+\frac{3}{2}$£¬
´Ëʱ$¡÷=48£¨{2{k^2}+\frac{3}{2}}£©£¾0$£®
Ô²O£ºx2+y2=3µÄÔ²Ðĵ½Ö±ÏßPQµÄ¾àÀëΪ$d=\frac{|m|}{{\sqrt{{k^2}+1}}}$£¬
ËùÒÔ$|MN|=2\sqrt{{{£¨\sqrt{3}£©}^2}-{d^2}}$£¬
µÃ$|MN{|^2}=4£¨{3-\frac{m^2}{{{k^2}+1}}}£©=4£¨{3-\frac{{2{k^2}+\frac{3}{2}}}{{{k^2}+1}}}£©=4[{3-\frac{{2£¨{k^2}+1£©-\frac{1}{2}}}{{{k^2}+1}}}]=4+\frac{2}{{{k^2}+1}}$£¬
ËùÒÔµ±$k=0£¬\;\;m=¡À\frac{{\sqrt{6}}}{2}$ʱ£¬|MN|×î´ó£¬×î´óֵΪ$\sqrt{6}$£¬
×ÛÉÏ£¬Ö±ÏßPQ±»Ô²O£ºx2+y2=3½ØµÃÏÒ³¤µÄ×î´óֵΪ$\sqrt{6}$£¬
´Ëʱ£¬Ö±ÏßPQµÄ·½³ÌΪ$y=¡À\frac{{\sqrt{6}}}{2}$£®

µãÆÀ ±¾Ì⿼²éÇúÏß·½³ÌµÄÇ󷨣¬¿¼²éÏÒ³¤µÄ×î´óÖµ¼°¶ÔÓ¦µÄÖ±Ïß·½³ÌµÄÇ󷨣¬¿¼²éÔ²×¶ÇúÏß¡¢Ö±Ïß·½³Ì¡¢Î¤´ï¶¨Àí¡¢¸ùµÄÅбðʽ¡¢ÏÒ³¤¹«Ê½µÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖªFÊÇÅ×ÎïÏßx2=4yµÄ½¹µã£¬PÊÇÅ×ÎïÏßÉϵÄÒ»¸ö¶¯µã£¬ÇÒAµÄ×ø±êΪ£¨0£¬-1£©£¬Ôò$\frac{|PF|}{|PA|}$µÄ×îСֵµÈÓÚ$\frac{\sqrt{2}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®Èô¶Ô?x¡Ê[0£¬+¡Þ£©£¬²»µÈʽ2ax¡Üex-1ºã³ÉÁ¢£¬ÔòʵÊýaµÄ×î´óÖµÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$\frac{1}{4}$C£®1D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®É躯Êýf£¨x£©=|x+3|-|x-3|
£¨1£©½â²»µÈʽf£¨x£©¡Ý3£»
£¨2£©µ±x¡ÊR£¬y¡ÊRʱ£¬Ö¤Ã÷£º|x+3|-|x-3|¡Ü|y+1|+|y-5|£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=|x-2|£®
£¨1£©½â²»µÈʽ£ºf£¨x£©£¼6£»
£¨2£©Èôf£¨x£©+|x+1|¡Ý2t-1¶ÔÈÎÒâx¡ÊRºã³ÉÁ¢£¬ÇóʵÊýtµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªÍÖÔ²¦¸£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©£¬¹ýµã$Q£¨\frac{{\sqrt{2}}}{2}£¬1£©$×÷Ô²x2+y2=1µÄÇÐÏߣ¬Çеã·Ö±ðΪS£¬T£¬Ö±ÏßSTÇ¡ºÃ¾­¹ýÍÖÔ²¦¸µÄÓÒ¶¥µãºÍÉ϶¥µã£®
£¨¢ñ£©ÇóÍÖÔ²¦¸µÄ·½³Ì£»
£¨¢ò£©Èçͼ£¬¹ýÍÖÔ²¦¸µÄÓÒ½¹µãF×÷Á½Ìõ»¥Ïà´¹Ö±µÄÏÒAB£¬CD£¬ÉèAB£¬CDµÄÖеã·Ö±ðΪM£¬N£¬Ö¤Ã÷£ºÖ±ÏßMN±Ø¹ý¶¨µã£¬²¢Çó´Ë¶¨µã×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖÐÒÑÖªF1£¬F2·Ö±ðΪÍÖÔ²E£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;£¨a£¾b£¾0£©$µÄ×óÓÒ½¹µã£¬ÇÒÍÖÔ²¾­¹ýµãA£¨2£¬0£©ºÍµã£¨1£¬3e£©£¬ÆäÖÐeΪÍÖÔ²EµÄÀëÐÄÂÊ£®
£¨1£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨2£©µãPΪÍÖÔ²EÉÏÈÎÒâÒ»µã£¬ÇóPA2+PO2µÄ×îСֵ£»
£¨3£©¹ýµãAµÄÖ±Ïßl½»ÍÖÔ²EÓÚÁíÒ»µãB£¬µãMÔÚÖ±ÏßlÉÏ£¬ÇÒOM=MA£¬ÈôMF1¡ÍBF2£¬ÇóÖ±ÏßlµÄбÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖª£¨a+x+x2£©£¨1-x£©4µÄÕ¹¿ªÊ½Öк¬x3ÏîµÄϵÊýΪ-10£¬Ôòa=£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÒÑÖªf£¨tanx£©=cos2x£¬Ôòf£¨$\frac{\sqrt{3}}{2}$£©µÄÖµÊÇ$\frac{1}{7}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸