·ÖÎö £¨1£©½«$\left\{\begin{array}{l}x=x'\\ y=\frac{2}{{\sqrt{3}}}y'\end{array}\right.$´úÈëx2+y2=4£¬ÄÜÇó³öÇúÏßCµÄ·½³Ì£»
£¨2£©ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬Ö±ÏßPQÓëÔ²O£ºx2+y2=3µÄ½»µãΪM£¬N£¬µ±Ö±ÏßPQ¡ÍxÖáʱ£¬ÇóµÃ|MN|=2£»µ±Ö±ÏßPQÓëxÖá²»´¹Ö±Ê±£¬ÉèÖ±ÏßPQµÄ·½³ÌΪy=kx+m£¬ÁªÁ¢$\left\{\begin{array}{l}y=kx+m£¬\;\;\\ \frac{x^2}{4}+\frac{y^2}{3}=1£¬\;\;\end{array}\right.$µÃ£¨4k2+3£©x2+8kmx+4m2-12=0£¬ÓÉ´ËÀûÓÃΤ´ï¶¨Àí¡¢¸ùµÄÅбðʽ¡¢ÏÒ³¤¹«Ê½£¬½áºÏÒÑÖªÌõ¼þÄÜÇó³öÖ±ÏßPQ±»Ô²O£ºx2+y2=3½ØµÃÏÒ³¤µÄ×î´óÖµ¼°¶ÔÓ¦ÓõÄÖ±ÏßPQµÄ·½³Ì£®
½â´ð ½â£º£¨1£©½«$\left\{\begin{array}{l}x=x'\\ y=\frac{2}{{\sqrt{3}}}y'\end{array}\right.$´úÈëx2+y2=4µÃ${x'^2}+\frac{4}{3}{y'^2}=4$£¬
»¯¼òµÃ$\frac{{{{x'}^2}}}{4}+\frac{{{{y'}^2}}}{3}=1$£¬
¼´$\frac{x^2}{4}+\frac{y^2}{3}=1$ΪÇúÏßCµÄ·½³Ì£®
£¨2£©ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬Ö±ÏßPQÓëÔ²O£ºx2+y2=3µÄ½»µãΪM£¬N£®
µ±Ö±ÏßPQ¡ÍxÖáʱ£¬Q£¨x1£¬-y1£©£¬
ÓÉ$\left\{\begin{array}{l}{k_1}\;•\;{k_2}=\frac{y_1}{x_1}\;•\;\frac{{-{y_1}}}{x_1}=-\frac{3}{4}£¬\;\;\\ \frac{x_1^2}{4}+\frac{y_1^2}{3}=1\end{array}\right.$µÃ$\left\{\begin{array}{l}{x_1}=\sqrt{2}£¬\;\;\\{y_1}=¡À\frac{{\sqrt{6}}}{2}\end{array}\right.$»ò$\left\{\begin{array}{l}{x_1}=-\sqrt{2}£¬\;\;\\{y_1}=¡À\frac{{\sqrt{6}}}{2}£¬\;\;\end{array}\right.$
´Ëʱ¿ÉÇóµÃ$|MN|=2\sqrt{{{£¨\sqrt{3}£©}^2}-{{£¨\sqrt{2}£©}^2}}=2$£®
µ±Ö±ÏßPQÓëxÖá²»´¹Ö±Ê±£¬ÉèÖ±ÏßPQµÄ·½³ÌΪy=kx+m£¬
ÁªÁ¢$\left\{\begin{array}{l}y=kx+m£¬\;\;\\ \frac{x^2}{4}+\frac{y^2}{3}=1£¬\;\;\end{array}\right.$ÏûyµÃ£¨4k2+3£©x2+8kmx+4m2-12=0£¬
¡÷=64k2m2-4£¨4k2+3£©£¨4m2-12£©=48£¨4k2-m2+3£©£¬${x_1}+{x_2}=\frac{-8km}{{4{k^2}+3}}$£¬${x_1}{x_2}=\frac{{4{m^2}-12}}{{4{k^2}+3}}$£¬
ËùÒÔ${y_1}{y_2}=£¨k{x_1}+m£©£¨k{x_2}+m£©={k^2}{x_1}{x_2}+km£¨{x_1}+{x_2}£©+{m^2}={k^2}\frac{{4{m^2}-12}}{{4{k^2}+3}}+km\frac{-8km}{{4{k^2}+3}}+{m^2}$
=$\frac{{3{m^2}-12{k^2}}}{{4{k^2}+3}}$£¬
ÓÉ${k_1}\;•\;{k_2}=\frac{y_1}{x_1}\;•\;\frac{y_2}{x_2}=-\frac{3}{4}$µÃ$\frac{{\frac{{3{m^2}-12{k^2}}}{{4{k^2}+3}}}}{{\frac{{4{m^2}-12}}{{4{k^2}+3}}}}=\frac{{3{m^2}-12{k^2}}}{{4{m^2}-12}}=-\frac{3}{4}$£¬${m^2}=2{k^2}+\frac{3}{2}$£¬
´Ëʱ$¡÷=48£¨{2{k^2}+\frac{3}{2}}£©£¾0$£®
Ô²O£ºx2+y2=3µÄÔ²Ðĵ½Ö±ÏßPQµÄ¾àÀëΪ$d=\frac{|m|}{{\sqrt{{k^2}+1}}}$£¬
ËùÒÔ$|MN|=2\sqrt{{{£¨\sqrt{3}£©}^2}-{d^2}}$£¬
µÃ$|MN{|^2}=4£¨{3-\frac{m^2}{{{k^2}+1}}}£©=4£¨{3-\frac{{2{k^2}+\frac{3}{2}}}{{{k^2}+1}}}£©=4[{3-\frac{{2£¨{k^2}+1£©-\frac{1}{2}}}{{{k^2}+1}}}]=4+\frac{2}{{{k^2}+1}}$£¬
ËùÒÔµ±$k=0£¬\;\;m=¡À\frac{{\sqrt{6}}}{2}$ʱ£¬|MN|×î´ó£¬×î´óֵΪ$\sqrt{6}$£¬
×ÛÉÏ£¬Ö±ÏßPQ±»Ô²O£ºx2+y2=3½ØµÃÏÒ³¤µÄ×î´óֵΪ$\sqrt{6}$£¬
´Ëʱ£¬Ö±ÏßPQµÄ·½³ÌΪ$y=¡À\frac{{\sqrt{6}}}{2}$£®
µãÆÀ ±¾Ì⿼²éÇúÏß·½³ÌµÄÇ󷨣¬¿¼²éÏÒ³¤µÄ×î´óÖµ¼°¶ÔÓ¦µÄÖ±Ïß·½³ÌµÄÇ󷨣¬¿¼²éÔ²×¶ÇúÏß¡¢Ö±Ïß·½³Ì¡¢Î¤´ï¶¨Àí¡¢¸ùµÄÅбðʽ¡¢ÏÒ³¤¹«Ê½µÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{1}{2}$ | B£® | $\frac{1}{4}$ | C£® | 1 | D£® | 2 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | 2 | C£® | 3 | D£® | 4 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com