精英家教网 > 高中数学 > 题目详情
19.已知函数$f(x)=sin(2x+\frac{π}{4})$,则函数f(x)满足(  )
A.最小正周期为T=2πB.图象关于点$(\frac{π}{8},0)$对称
C.在区间$({0,\frac{π}{8}})$上为减函数D.图象关于直线$x=\frac{π}{8}$对称

分析 根据三角函数的周期性、单调性以及图象的对称性,逐一判断各个选项是否正确,从而得出结论.

解答 解:对于函数$f(x)=sin(2x+\frac{π}{4})$,它的周期为$\frac{2π}{2}$=π,故排除A;
令x=$\frac{π}{8}$,可得f(x)=1,故函数的图象关于直线$x=\frac{π}{8}$对称,不满足图象关于点$(\frac{π}{8},0)$对称,故D对,且B不对;
在区间$({0,\frac{π}{8}})$上,2x+$\frac{π}{4}$∈($\frac{π}{4}$,$\frac{π}{2}$),函数f(x)单调递增,故排除C;
故选:D.

点评 本题主要考查三角函数的周期性、单调性以及图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.$\int{\begin{array}{l}1\\ 0\end{array}}({e^x}+2x)$=e.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.北京是我国严重缺水的城市之一.为了倡导“节约用水,从我做起”,小明在他所在学校的2000名同学中,随机调查了40名同学家庭中一年的月均用水量(单位:吨),并将月均用水量分为6组:[2,4),[4,6),[6,8),[8,10),[10,12),[12,14]加以统计,得到如图所示的频率分布直方图.
(Ⅰ)给出图中实数a的值;
(Ⅱ)根据样本数据,估计小明所在学校2000名同学家庭中,月均用水量低于8吨的约有多少户;
(Ⅲ)在月均用水量大于或等于10吨的样本数据中,小明决定随机抽取2名同学家庭进行访谈,求这2名同学中恰有1人所在家庭的月均用水量属于[10,12)组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知复数z=$\frac{\sqrt{2}i-1}{(1+i)^{2}}$,其中i为虚数单位,则|z|=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知F是抛物线x2=4y的焦点,P是抛物线上的一个动点,且A的坐标为(0,-1),则$\frac{|PF|}{|PA|}$的最小值等于$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取4%的学生进行调查,则样本容量和抽取的高中生近视人数分别为(  )
A.200,20B.400,40C.200,40D.400,20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=$\frac{xln|x|}{|x|}$的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设$A(-3,-\frac{{\sqrt{6}}}{2})$为抛物线C:y2=2px(x>0)的准线上一点,F为C 的焦点,点P在C上且满足|PF|=m|PA|,若当m取得最小值时,点P恰好在以原点为中心,F为焦点的双曲线上,则该双曲线的离心率为(  )
A.3B.$\frac{3}{2}$C.$\sqrt{2}+1$D.$\frac{{\sqrt{2}+1}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆Ω:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),过点$Q(\frac{{\sqrt{2}}}{2},1)$作圆x2+y2=1的切线,切点分别为S,T,直线ST恰好经过椭圆Ω的右顶点和上顶点.
(Ⅰ)求椭圆Ω的方程;
(Ⅱ)如图,过椭圆Ω的右焦点F作两条互相垂直的弦AB,CD,设AB,CD的中点分别为M,N,证明:直线MN必过定点,并求此定点坐标.

查看答案和解析>>

同步练习册答案