精英家教网 > 高中数学 > 题目详情

【题目】知函数f(x)= (a>1),求:
(1)判断函数的奇偶性;
(2)证明f(x)是R上的增函数;
(3)求该函数的值域.

【答案】
(1)解:函数的定义域为R,

则f(﹣x) =﹣ =﹣f(x),

则函数f(x)是奇函数


(2)证明:f(x)= = =1﹣

∵a>1,∴ax是增函数,ax+1是增函数,

是减函数,﹣ 为增函数,

即f(x)=1﹣ 为增函数,

即f(x)是R上的增函数


(3)解:∵f(x)= = =1﹣ ,a>1,

∴ax+1>1,0< ,0< <2,

﹣2<﹣ <0,﹣1<1﹣ <1,

即﹣1<y<1,

故函数的值域为(﹣1,1)


【解析】(1)根据函数奇偶性的定义即可判断函数的奇偶性;(2)根据指数函数的单调性的性质即可证明f(x)是R上的增函数;(3)根据指数函数的性质即可求该函数的值域.
【考点精析】本题主要考查了函数的值域和函数单调性的判断方法的相关知识点,需要掌握求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的;单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列函数中,与y= 的奇偶性和单调性都相同的是(
A.f(x)=x1
B.f(x)=x
C.f(x)=x2
D.f(x)=x3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)证明上为增函数;

(2)当时,解不等式

(3)若上恒成立,求的最大整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的奇函数f(x)满足f(log2x)=
(1)求函数f(x)的解析式;
(2)判断并证明f(x)在定义域 R的单调性;
(3)若对任意的t∈R,不等式f(t2﹣2t)+f(3t2﹣k)<0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x2﹣1)定义域为[0,3],则f(2x﹣1)的定义域为(
A.[1, ]
B.[0, ]
C.[﹣3,15]
D.[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.若AC=BD=a,且AC与BD所成的角为60°,则四边形EFGH的面积为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=x2﹣2x+2在区间(0,4]的值域为(
A.(2,10]
B.[1,10]
C.(1,10]
D.[2,10]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y﹣29=0相切.
(Ⅰ)求圆的方程;
(Ⅱ)设直线ax﹣y+5=0(a>0)与圆相交于A,B两点,求实数a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,是否存在实数a,使得弦AB的垂直平分线l过点P(﹣2,4),若存在,求出实数a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】不用计算器求下列各式的值
(1)lg52+ lg8+lg5lg20+(lg2)2
(2)设2a=5b=m,且 + =2,求m.

查看答案和解析>>

同步练习册答案