精英家教网 > 高中数学 > 题目详情
13.一个空间几何体的三视图如图所示,其中正视图为等腰直角三角形,侧视图与俯视图为正方形,则该几何体的体积为(  )
A.64B.32C.$\frac{64}{3}$D.$\frac{32}{3}$

分析 由已知中的三视图,可知该几何体是一个等腰直角三角形为底面的直三棱柱,可以采用“补形还原法”,该几何体是正方体切割去一半而得到.

解答 解:由三视图知:几何体是一个等腰直角三角形为底面的直三棱柱.
∴体积V=S×h
=$\frac{1}{2}×4×4×4$
=32 
故选B

点评 本题考查的知识点是由三视图求体积,解决本题的关键是知道该几何体的形状,然后根据“主左一样高,主俯一样长,俯左一样宽”进行计算.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.若lgx有意义,则函数y=x2+3x-5的值域是(  )
A.[-$\frac{29}{4}$,+∞)B.(-$\frac{29}{4}$,+∞)C.[-5,+∞)D.(-5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=sin2ωx-2sin2ωx+1(ω>0)的最小正周期为π.
(1)求ω的值;
(2)求f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在一次抽样调查中测得样本的5个样本点,数值如表:
x9.513.517.521.525.5
y642.82.42.2
(1)画散点图,并根据散点图判断,y=bx+a与y=$\frac{b}{x}$+a那一个适宜作为y关于x的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)中判断结果及表中数据,求出y关于x的回归方程;
(3)根据(2)中所求回归方程,估计x=40时的y值(精确到小数后1位).
参考数据:①
$\overline{x}$$\overline{W}$$\overline{y}$$\sum_{I=1}^{5}$(xi-$\overline{x}$)(yi-$\overline{y}$)$\sum_{I=1}^{5}$(xi-$\overline{x}$)2$\sum_{I=1}^{5}$(Wi-$\overline{W}$)(yi-$\overline{y}$)$\sum_{I=1}^{5}$((Wi-$\overline{W}$)2
17.50.063.5-36.81600.1650.003
表中Wi=$\frac{1}{{x}_{i}}$,$\overline{W}$=$\frac{1}{5}$$\sum_{i=1}^{5}$Wi
②由最小二乘法,回归方程y=bx+a中的b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设x,y满足约束条件$\left\{\begin{array}{l}{x+y-1≥0}\\{x-y-1≤0}\\{x-3y+3≥0}\end{array}\right.$,则目标函数z=2x+y的最大值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有(  )种.
A.12B.24C.36D.48

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,平面中两条直线l1和l2相交于点O,对于平面上任意一点M,若p,q分别是M到直线l1和l2的距离,则称有序非负实数对(p,q)是点M的“距离坐标”.给出下列四个命题:
①若p=q=0,则“距离坐标”为(0,0)的点有且仅有1个.
②若pq=0,且p+q≠0,则“距离坐标”为(p,q)的点有且仅有2个.
③若pq≠0,则“距离坐标”为(p,q)的点有且仅有4个.
④若p=q,则点M的轨迹是一条过O点的直线.
其中所有正确命题的序号为(  )
A.①②④B.①②③C.②③D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.数列{an}是等差数列,a3和a2014是方程5x2-6x+1=0的两根,则数列{an}的前2016项的和为$\frac{6048}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数$y=2sin(ωx+\frac{π}{6})\;(ω>0)$的图象的两条相邻对称轴的距离是$\frac{π}{2}$,则ω=(  )
A.4B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

同步练习册答案