【题目】已知集合
(
,且
),若存在非空集合
,使得
,且
,并任意
,都有
,则称集合S具有性质P,
称为集合S的P子集.
(1)当
时,试说明集合S具有性质P,并写出相应的P子集
;
(2)若集合S具有性质P,集合T是集合S的一个P子集,设
,求证:任意
,
,都有
;
(3)求证:对任意正整数
,集合S具有性质P.
【答案】(1)
;(2)见解析;(3)见解析
【解析】
(1)根据新定义,即可求出的P子集;(2)分类讨论,根据定义即可证明,(3)利用数学归纳法证明即可.
(1)当
时,
,
令
,![]()
则
,且对
都有
![]()
所以S具有性质P,相应的P子集为
,![]()
(2)1.若
,由已知
,
所以
;
2.若
,可设![]()
此时![]()
所以
且![]()
所以
;
3.若
,![]()
则![]()
所以![]()
又因为
,![]()
所以![]()
所以![]()
所以![]()
综上所述:任意
,
,都有![]()
(3)由(1)可知当
时,命题成立,即集合S具有性质P
假设
时,命题成立
即
且![]()
都有![]()
那么当
时,记![]()
并构造如下
个集合,
,
![]()
显然![]()
又因为
,
所以![]()
下面证明
中任意两个元素之差不等于
中的任意一个元素![]()
1.若两个元素![]()
则![]()
所以![]()
2.若两个元素都属于![]()
由第二问可知,
中任意两个元素之差不等于
中的任意元素![]()
从而
时命题成立
综上所述:对任意正整数
,集合S具有性质P.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,
,
,动点
满足:直线
与直线
的斜率之积恒为
,记动点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)若点
位于第一象限,过点
,
分别作直线
,直线
,直线
,
交于点
.
①若点
的横坐标为-1,求点
的坐标;
②直线
与曲线
交于点
,且
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数
,如果存在实数
(
,且
不同时成立),使得
对
恒成立,则称函数
为“
映像函数”.
(1)判断函数
是否是“
映像函数”,如果是,请求出相应的
的值,若不是,请说明理由;
(2)已知函数
是定义在
上的“
映像函数”,且当
时,
.求函数
(
)的反函数;
(3)在(2)的条件下,试构造一个数列
,使得当
时,
,并求
时,函数
的解析式,及
的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,给出下列四个判断:
(1)
的值域是
;
(2)
的图像是轴对称图形;
(3)
的图像是中心对称图形;
(4)方程
有解.
其中正确的判断有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地政府为了帮助当地农民脱贫致富,开发了一种新型水果类食品,该食品生产成本为每件8元.当天生产当天销售时,销售价为每件12元,当天未卖出的则只能卖给水果罐头厂,每件只能卖5元.每天的销售量与当天的气温有关,根据市场调查,若气温不低于
,则销售5000件;若气温位于
,则销售3500件;若气温低于
,则销售2000件.为制定今年8月份的生产计划,统计了前三年8月份的气温范围数据,得到下面的频数分布表:
气温范围 (单位: |
|
|
|
|
|
天数 | 4 | 14 | 36 | 21 | 15 |
以气温范围位于各区间的频率代替气温范围位于该区间的概率.
(1)求今年8月份这种食品一天销售量(单位:件)的分布列和数学期望值;
(2)设8月份一天销售这种食品的利润为
(单位:元),当8月份这种食品一天生产量
(单位:件)为多少时,
的数学期望值最大,最大值为多少![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于在某个区间
上有意义的函数
,如果存在一次函数
使得对于任意的
,有
恒成立,则称函数
是函数
的一个弱渐近函数.
(1)若函数
是函数
在区间
上的一个弱渐近函数,求实数
的取值范围;
(2)证明:函数
是函数
在区间
上的弱渐近函数;
(3)试问:函数
与函数
(其中
为自然对数的底数)在区间
上是否存在相同的弱渐近函数?如果存在,请求出对应的弱渐近函数应满足的条件;如不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,若存在实数
,使得对于定义域内的任意实数
,均有
成立,则称函数
为“可平衡”函数,有序数对
称为函数
的“平衡”数对.
(1)若
,判断
是否为“可平衡”函数,并说明理由;
(2)若
,
,当
变化时,求证:
与
的“平衡”数对相同;
(3)若
,且
、
均为函数
的“平衡”数对.当
时,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com