精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=|a-x|(a∈R)
(Ⅰ)当a=$\frac{3}{2}$时,求使不等式f(2x-$\frac{3}{2}$)>2f(x+2)+2成立的x的集合A;
(Ⅱ)设x0∈A,证明f(x0x)≥x0f(x)+f(ax0).

分析 (Ⅰ)把a的值代入不等式化简后,对x分类讨论,分别去掉绝对值求出每个不等式的解集,再取并集即得不等式的解集;
(Ⅱ)由(I)和x0∈A求出x0的范围,化简f(x0x)-x0f(x)后利用绝对值三角不等式证明结论成立.

解答 解:(Ⅰ)当a=$\frac{3}{2}$时,原不等式化为:|x-$\frac{3}{2}$|-|x+$\frac{1}{2}$|>1①,-----1分
当x$≤-\frac{1}{2}$时,①式化为:$\frac{3}{2}$-x+x+$\frac{1}{2}$>1恒成立,
即x$≤-\frac{1}{2}$;-----2分
当$-\frac{1}{2}$<x<$\frac{3}{2}$时,①式化为:$\frac{3}{2}$-x-x-$\frac{1}{2}$>1恒成立,
解得x<0,即$-\frac{1}{2}$<x<0;------3分
当x≥$\frac{3}{2}$时,①式化为:-$\frac{3}{2}$+x-x-$\frac{1}{2}$>1无解,-------4分
综上,原不等式的解集A=(-∞,0);------5分
证明:(Ⅱ)因为x0∈A,所以x0<0,
又f(x)=|a-x|,-------6分
所以f(x0x)-x0f(x)=|a-x0x|-x0|a-x|
=|a-x0x|+|-x0a+x0x|≥|a-x0x-x0a+x0x|
=|a-ax0|=f(ax0),-------9分
所以f(x0x)≥x0f(x)+f(ax0).-------10分

点评 本题考查绝对值不等式的解法,以及绝对值三角不等式的应用,体现了等价转化以及分类讨论的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知$\overrightarrow{a}$=(λ+1,0,2λ),$\overrightarrow{b}$=(6,2μ-1,2),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则λμ=$\frac{1}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,已知梯形CDEF与△ADE所在的平面垂直,AD⊥DE,CD⊥DE,AB∥CD∥EF,AE=2DE=8,AB=3,EF=9,CD=12,连接BC,BF.
(Ⅰ)若G为AD边上一点,DG=$\frac{1}{3}$DA,求证:EG∥平面BCF;
(Ⅱ)求多面体ABCDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,直四棱柱ABCD-A1B1C1D1的底面ABCD是直角梯形,其中AB⊥AD,AB=2AD=2AA1=4,CD=1.
(Ⅰ)证明:BD1⊥平面A1C1D;
(Ⅱ)求多面体BDC1A1D1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=|ax-2|.
(Ⅰ)当a=2时,解不等式f(x)>x+1;
(Ⅱ)若关于x的不等式f(x)+f(-x)<$\frac{1}{m}$有实数解,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设a,b∈R.若直线l:ax+y-7=0在矩阵A=$[\begin{array}{l}{3}&{0}\\{-1}&{b}\end{array}]$对应的变换作用下,得到的直线为l′:9x+y-91=0.求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设F1,F2是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的两个焦点,若点P在双曲线上,且∠F1PF2=90°,|PF1|•|PF2|=2,则b=(  )
A.1B.2C.$\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知F1、F2为双曲线的焦点,过F2垂直于实轴的直线交双曲线于A、B两点,BF1交y轴于点C,若AC⊥BF1,则双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2$\sqrt{2}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)左、右焦点分别为F1,F2,A(2,0)是椭圆的右顶点,过F2且垂直与x轴的直线交椭圆于P,Q两点,且|PQ|=3
(1)求椭圆的方程
(2)若直线l与椭圆交于两点M,N(M,N不同于点A),若$\overrightarrow{AM}$•$\overrightarrow{AN}$=0,求证:直线l过定点,并求出定点坐标.

查看答案和解析>>

同步练习册答案