精英家教网 > 高中数学 > 题目详情
10.如图,直四棱柱ABCD-A1B1C1D1的底面ABCD是直角梯形,其中AB⊥AD,AB=2AD=2AA1=4,CD=1.
(Ⅰ)证明:BD1⊥平面A1C1D;
(Ⅱ)求多面体BDC1A1D1的体积.

分析 (Ⅰ)连接AD1,B1D1,由已知可得A1D⊥AD1,再由AB⊥平面ADD1,得AB⊥A1D,由此可得A1D⊥平面ABD1,即A1D⊥BD1,在平面A1C1 B1内,通过解直角三角形可得A1C1⊥B1D1,即BB1⊥平面A1C1 B1,进一步得到BB1⊥A1C1,再由线面垂直的判定可得BD1⊥平面A1C1D;
(Ⅱ)多面体BDC1A1D1可看作是有公共底面DA1C1 的两个三棱锥构成的组合体,求出△A1DC1的面积S,由(Ⅰ)知,BD1⊥面A1DC1,然后由棱锥体积公式求得多面体BDC1A1D1的体积.

解答 (Ⅰ)证明:连接AD1,B1D1
∵AA1D1D是正方形,∴A1D⊥AD1
又∵AB⊥平面ADD1,A1D?平面ADD1,∴AB⊥A1D.
因此,A1D⊥平面ABD1,∴A1D⊥BD1
又在平面A1C1 B1内,Rt△C1D1A1∽Rt△B1A1D1
∴∠D1A1C1+∠A1D1B1=∠D1A1C1+∠D1C1A1=90°,即A1C1⊥B1D1
又BB1⊥平面A1C1 B1,A1C1?平面A1C1B1
∴BB1⊥A1C1
因此,A1C1⊥平面BB1D1,∴A1C1⊥BD1
又A1D∩A1C1=A1,∴BD1⊥平面A1C1D;
(Ⅱ)解:多面体BDC1A1D1可看作是有公共底面DA1C1 的两个三棱锥构成的组合体,
在Rt△DD1C1 中,$D{C}_{1}=\sqrt{{2}^{2}+{1}^{2}}=\sqrt{5}$,在Rt△DAA1 中,$D{A}_{1}=\sqrt{{2}^{2}+{2}^{2}}=2\sqrt{2}$,
在Rt△A1D1C1 中,${A}_{1}{C}_{1}=\sqrt{{2}^{2}+{1}^{2}}=\sqrt{5}$,∴△A1DC1为等腰三角形,且面积S=$\sqrt{6}$,
由(Ⅰ)知,BD1⊥面A1DC1,且$B{D}_{1}=\sqrt{{D}_{1}{A}^{2}+{A}_{1}{B}^{2}}=2\sqrt{6}$.
∴多面体BDC1A1D1的体积V=$\frac{1}{3}S×B{D}_{1}=\frac{1}{3}×\sqrt{6}×2\sqrt{6}=4$.

点评 本题考查直线与平面垂直的判定,考查空间想象能力和思维能力,训练了利用等积法求多面体的体积,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且仅有两个数字相邻,则满足条件的不同五位数的个数是48.(注:结果请用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是(  )
(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸;③台体的体积公式V=$\frac{1}{3}({S_上}+\sqrt{{S_上}{S_下}}+{S_下})•h$)
A.2寸B.3寸C.4寸D.5寸

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x(1+lnx).
(Ⅰ)求函数f(x)的最小值;
(Ⅱ)设F(x)=ax2+f′(x)(a∈R),讨论函数F(x)的单调性;
(Ⅲ)若斜率为k的直线与曲线y=f'(x)交于A(x1,y1),B(x2,y2)两点,其中x1<x2,求证:${x_1}<\frac{1}{k}<{x_2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,四边形PDCE为矩形,四边形ABCD为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=$\frac{1}{2}$CD=1.
(1)若M为PA中点,求证:AC∥平面MDE;
(2)若平面PAD与PBC所成的锐二面角的大小为$\frac{π}{3}$,求线段PD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{9+\sqrt{3}}{6}$πB.$\frac{6+\sqrt{3}}{6}$πC.$\frac{3+\sqrt{3}}{6}$πD.$\frac{12+\sqrt{3}}{6}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=|a-x|(a∈R)
(Ⅰ)当a=$\frac{3}{2}$时,求使不等式f(2x-$\frac{3}{2}$)>2f(x+2)+2成立的x的集合A;
(Ⅱ)设x0∈A,证明f(x0x)≥x0f(x)+f(ax0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A、B、C所对的边分别是a、b、c,已知$\sqrt{3}a=2csinA$且c<b. 
(Ⅰ)求角C的大小;
(Ⅱ)若b=4,延长AB至D,使BC=BD,且AD=5,求△ACD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设函数f(x)=$\left\{\begin{array}{l}{(x-a)^2}+e,x≤2\\ \frac{x}{1nx}+a+10,x>2\end{array}$,(e是自然对数的底数),若f(2)是函数f(x)的最小值,则a的取值范围是(  )
A.[-1,6]B.[1,4]C.[2,4]D.[2,6]

查看答案和解析>>

同步练习册答案