精英家教网 > 高中数学 > 题目详情
1.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是(  )
(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸;③台体的体积公式V=$\frac{1}{3}({S_上}+\sqrt{{S_上}{S_下}}+{S_下})•h$)
A.2寸B.3寸C.4寸D.5寸

分析 由题意求得盆中水的上地面半径,代入圆台体积公式求得水的体积,除以盆口面积得答案.

解答 解:如图,由题意可知,天池盆上底面半径为14寸,下底面半径为6寸,高为18寸.
∵积水深9寸,
∴水面半径为$\frac{1}{2}$(14+6)=10寸,
则盆中水的体积为$\frac{1}{3}$π×9(62+102+6×10)=588π(立方寸).
∴平地降雨量等于$\frac{588π}{π×1{4}^{2}}$=3(寸).
故选:B.

点评 本题考查柱、锥、台体的体积求法,正确理解题意是关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.在某产品尺寸的频率分布直方图中,与其中一组[a,b)对应的小长方形高是h.若该组的频率为m,则|a-b|=$\frac{m}{h}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知$\overrightarrow{a}$=(λ+1,0,2λ),$\overrightarrow{b}$=(6,2μ-1,2),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则λμ=$\frac{1}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$与y轴的正半轴相交于点$M({0,\sqrt{3}})$,且椭圆的离心率为$\frac{1}{2}$.若曲线E上相异两点A、B满足直线MA,MB的斜率之积为$\frac{1}{4}$.
(1)求曲线E的方程;
(2)证明:直线AB恒过定点,并求定点的坐标;
(3)求△ABM的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在平面直角坐标系xOy中,已知点A(x1,y1)在曲线C1:y=x2-lnx上,点B(x2,y2)在直线x-y-2=0上,则${{(x}_{2}{-x}_{1})}^{2}$+${{(y}_{2}{-y}_{1})}^{2}$的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若实数x,y满足不等式$\left\{\begin{array}{l}{2x+y+2≥0}\\{x+y-1≤0}\\{y≥m}\end{array}\right.$,且x-y的最大值为5,则实数m的值为(  )
A.0B.-1C.-2D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,已知梯形CDEF与△ADE所在的平面垂直,AD⊥DE,CD⊥DE,AB∥CD∥EF,AE=2DE=8,AB=3,EF=9,CD=12,连接BC,BF.
(Ⅰ)若G为AD边上一点,DG=$\frac{1}{3}$DA,求证:EG∥平面BCF;
(Ⅱ)求多面体ABCDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,直四棱柱ABCD-A1B1C1D1的底面ABCD是直角梯形,其中AB⊥AD,AB=2AD=2AA1=4,CD=1.
(Ⅰ)证明:BD1⊥平面A1C1D;
(Ⅱ)求多面体BDC1A1D1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知F1、F2为双曲线的焦点,过F2垂直于实轴的直线交双曲线于A、B两点,BF1交y轴于点C,若AC⊥BF1,则双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2$\sqrt{2}$D.2$\sqrt{3}$

查看答案和解析>>

同步练习册答案