精英家教网 > 高中数学 > 题目详情
9.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$与y轴的正半轴相交于点$M({0,\sqrt{3}})$,且椭圆的离心率为$\frac{1}{2}$.若曲线E上相异两点A、B满足直线MA,MB的斜率之积为$\frac{1}{4}$.
(1)求曲线E的方程;
(2)证明:直线AB恒过定点,并求定点的坐标;
(3)求△ABM的面积的最大值.

分析 (1)由椭圆方程可知:b=$\sqrt{3}$,利用离心率公式可知则$\frac{{b}^{2}}{{a}^{2}}$=$\frac{3}{4}$,即可求得a的值,求得椭圆方程;
(2)若直线AB的斜率不存在,不成立,则设直线AB:y=kx+m,代入椭圆方程,由韦达定理,直线的斜率公式及${k_{AM}}•{k_{BM}}=\frac{1}{4}$,即可求得故$m=\sqrt{3}$或$m=2\sqrt{3}$,由x1x2≠0知$m=2\sqrt{3}$,即直线AB恒过定点$N({0,2\sqrt{3}})$.
(3)利用韦达定理,弦长公式及基本不等式的性质,即可求得△ABM的面积的最大值.

解答 解:(1)由题意可知:b=$\sqrt{3}$,离心率e=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{1}{2}$,则$\frac{{b}^{2}}{{a}^{2}}$=$\frac{3}{4}$,
∴a2=4,
∴曲线E的方程为$\frac{x^2}{4}+\frac{y^2}{3}=1$.
(2)证明:由曲线E的方程得,上顶点$M({0,\sqrt{3}})$,记A(x1,y1),B(x2,y2),
由题意知,x1≠0,x2≠0,若直线AB的斜率不存在,则直线AB的方程为x=x1,故y1=-y2
且$y_1^2=y_2^2=3({1-\frac{x_1^2}{4}})$,
因此${k_{MA}}•{k_{MB}}=\frac{{{y_1}-\sqrt{3}}}{x_1}•\frac{{{y_2}-\sqrt{3}}}{x_2}=-\frac{y_1^2-3}{x_1^2}=\frac{3}{4}$,与已知不符,
因此直线AB的斜率存在,设直线AB:y=kx+m,
代入椭圆E的方程$\frac{x^2}{4}+\frac{y^2}{3}=1$,得(3+4k2)x2+8kmx+4(m2-3)=0,①
由直线AB与曲线E有公共点A,B,则方程①有两个非零不等实根x1,x2
∴${x_1}+{x_2}=-\frac{8km}{{3+4{k^2}}}$,${x_1}{x_2}=\frac{{4({{m^2}-3})}}{{3+4{k^2}}}$,又${k_{AM}}=\frac{{{y_1}-\sqrt{3}}}{x_1}=\frac{{k{x_1}+m-\sqrt{3}}}{x_1}$,${k_{MB}}=\frac{{{y_2}-\sqrt{3}}}{x_2}=\frac{{k{x_2}+m-\sqrt{3}}}{x_2}$,
由${k_{AM}}•{k_{BM}}=\frac{1}{4}$,
得$4({k{x_1}+m-\sqrt{3}})({k{x_2}+m-\sqrt{3}})={x_1}{x_2}$,
即$({4{k^2}-1}){x_1}{x_2}+4k({m-\sqrt{3}})({{x_1}+{x_2}})+4{({m-\sqrt{3}})^2}=0$,
∴$4({{m^2}-3})({4{k^2}-1})+4k({m-\sqrt{3}})({-8km})+4{({m-\sqrt{3}})^2}({3+4{k^2}})=0$,
化简得${m^2}-3\sqrt{3}m+6=0$,故$m=\sqrt{3}$或$m=2\sqrt{3}$,
结合x1x2≠0知$m=2\sqrt{3}$,即直线AB恒过定点$N({0,2\sqrt{3}})$.
(3)由△>0且$m=2\sqrt{3}$得$k<-\frac{3}{2}$或$k>\frac{3}{2}$,
又${S_{△ABM}}=|{{S_{△ANM}}-{S_{△BNM}}}|=\frac{1}{2}|{MN}|•|{{x_2}-{x_1}}|=\frac{{\sqrt{3}}}{2}\sqrt{{{({{x_1}+{x_2}})}^2}-4{x_1}{x_2}}$=$\frac{{\sqrt{3}}}{2}\sqrt{{{({\frac{-8km}{{3+4{k^2}}}})}^2}-4•\frac{{4({{m^2}-3})}}{{3+4{k^2}}}}=\frac{{6\sqrt{4{k^2}-9}}}{{3+4{k^2}}}=\frac{6}{{\sqrt{4{k^2}-9}+\frac{12}{{\sqrt{4{k^2}-9}}}}}≤\frac{{\sqrt{3}}}{2}$,
当且仅当4k2-9=12,即$k=±\frac{{\sqrt{21}}}{2}$时,△ABM的面积最大,最大值为$\frac{{\sqrt{3}}}{2}$,
△ABM的面积的最大值$\frac{{\sqrt{3}}}{2}$.

点评 本题考查椭圆的标准方程及简单几何性质,考查直线与椭圆的位置关系,韦达定理,弦长公式及基本不等式的应用,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.不等式|x+3|≤0的解集为(  )
A.B.{-3}C.(-∞,-3)∪(-3,+∞)D.R

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且仅有两个数字相邻,则满足条件的不同五位数的个数是48.(注:结果请用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,若AB=4,AC=BC=3,则sinC的值为(  )
A.$\frac{2}{3}$B.$\frac{1}{9}$C.$\frac{\sqrt{5}}{3}$D.$\frac{4\sqrt{5}}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在直角坐标系xOy,直线l的参数方程为$\left\{\begin{array}{l}{x=-1+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴非负半轴为极轴建立极坐标系,圆C的极坐标方程式ρ=-4cosθ,则圆C的圆心到直线l的距离为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某单位实行休年假制度三年以来,50名职工休年假的次数进行的调查统计结果如表所示:
休假次数0123
人数5102015
根据表中信息解答以下问题:
(1)从该单位任选两名职工,求这两人休年假次数之和为4的概率;
(2)从该单位任选两名职工,用ξ表示这两人休年假次数之差的绝对值,求随机变量ξ的分布列及数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是(  )
(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸;③台体的体积公式V=$\frac{1}{3}({S_上}+\sqrt{{S_上}{S_下}}+{S_下})•h$)
A.2寸B.3寸C.4寸D.5寸

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x(1+lnx).
(Ⅰ)求函数f(x)的最小值;
(Ⅱ)设F(x)=ax2+f′(x)(a∈R),讨论函数F(x)的单调性;
(Ⅲ)若斜率为k的直线与曲线y=f'(x)交于A(x1,y1),B(x2,y2)两点,其中x1<x2,求证:${x_1}<\frac{1}{k}<{x_2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A、B、C所对的边分别是a、b、c,已知$\sqrt{3}a=2csinA$且c<b. 
(Ⅰ)求角C的大小;
(Ⅱ)若b=4,延长AB至D,使BC=BD,且AD=5,求△ACD的面积.

查看答案和解析>>

同步练习册答案