精英家教网 > 高中数学 > 题目详情
20.用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且仅有两个数字相邻,则满足条件的不同五位数的个数是48.(注:结果请用数字作答)

分析 对数字4分类讨论,结合数字1,3,5中有且仅有两个数字相邻,利用分类计数原理,即可得出结论.

解答 解:数字4出现在第2位时,数字1,3,5中相邻的数字出现在第3,4位或者4,5位,共有C32A22A22=12个,
数字2出现在第4位时,同理也有12个;
数字4出现在第3位时,数字1,3,5中相邻的数字出现在第1,2位或第4,5位,共有C21C32A22A22=24个,
故满足条件的不同五位数的个数是48.
故答案为:48.

点评 本题考查分类计数原理,考查排列、组合知识,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.若变量x,y满足约束条件$\left\{\begin{array}{l}{x+2y≥0}\\{x-y≤0}\\{x-2y+2≥0}\end{array}\right.$则z=$\frac{y}{x-3}$的最小值等于(  )
A.-4B.-2C.-$\frac{1}{8}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在某产品尺寸的频率分布直方图中,与其中一组[a,b)对应的小长方形高是h.若该组的频率为m,则|a-b|=$\frac{m}{h}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设命题p:A={x|(4x-3)2≤1};命题q:B={x|a≤x≤a+1},若¬p是¬q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=f'(1)x2+x+1,则$\int_0^1{f(x)}dx$=(  )
A.$-\frac{7}{6}$B.$\frac{7}{6}$C.$\frac{5}{6}$D.$-\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知对任意实数x.都有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(-x)>0,则x<0时有(  )
A.f′(x)>0,g′(-x)>0B.f′(x)>0,g′(-x)<0C.f′(x)<0,g′(-x)>0D.f′(x)<0,g′(-x)<0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知$\overrightarrow{a}$=(λ+1,0,2λ),$\overrightarrow{b}$=(6,2μ-1,2),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则λμ=$\frac{1}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$与y轴的正半轴相交于点$M({0,\sqrt{3}})$,且椭圆的离心率为$\frac{1}{2}$.若曲线E上相异两点A、B满足直线MA,MB的斜率之积为$\frac{1}{4}$.
(1)求曲线E的方程;
(2)证明:直线AB恒过定点,并求定点的坐标;
(3)求△ABM的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,直四棱柱ABCD-A1B1C1D1的底面ABCD是直角梯形,其中AB⊥AD,AB=2AD=2AA1=4,CD=1.
(Ⅰ)证明:BD1⊥平面A1C1D;
(Ⅱ)求多面体BDC1A1D1的体积.

查看答案和解析>>

同步练习册答案