| A. | 8204 | B. | 4102 | C. | 2048 | D. | 1024 |
分析 易知当2n≤x<2n+1时,[log2x]=n,从而可得[log22n]=[log2(2n+1)]=…=[log2(2n+1-1]=n,即有2n个n,从而求和.
解答 解:由题意知,
当2n≤x<2n+1时,[log2x]=n,
即[log22n]=[log2(2n+1)]=…=[log2(2n+1-1]=n,
故有2n个n,
故[log21]+[log22]+[log23]+…+[log21023]+[log21024]
=0+2×1+4×2+8×3+16×4+32×5+64×6+128×7×256×8+512×9+10
=8204,
故选:A.
点评 本题考查了对数运算的应用及分类讨论的思想应用.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{π}{3}$或$\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 8 | C. | 5 | D. | 不能确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\sqrt{3}$-$\sqrt{2}$,4-$\sqrt{13}$) | B. | (8-2$\sqrt{15}$,4-$\sqrt{13}$) | C. | (5-2$\sqrt{6}$,4-2$\sqrt{3}$) | D. | (8-2$\sqrt{15}$,4-2$\sqrt{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com