7£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1£º$\left\{\begin{array}{l}{x=a+acos¦Õ\\;}\\{y=asin¦Õ\\;}\end{array}\right.$£¨²ÎÊý¦Õ¡Ê[0£¬$\frac{¦Ð}{2}$]£¬ÊµÊýa£¾0£©£¬ÇúÏßC2£º$\left\{\begin{array}{l}{x=bcos¦Õ\\;}\\{y=b+bsin¦Õ\\;}\end{array}\right.$£¨²ÎÊý¦Õ¡Ê[0£¬$\frac{¦Ð}{2}$]£¬ÊµÊýa£¾0£©£¬ÇúÏßC3£º$\left\{\begin{array}{l}{x=tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$£¨tΪ²ÎÊý£¬t¡Ù0£¬ÆäÖÐ0¡Ü¦Á¡Ü¦Ð£©ÓëC1½»ÓÚAµã£¬ÓëC2½»ÓÚBµã£®
£¨1£©ÔÚÒÔOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬ÇóC1£¬C2µÄ¼«×ø±ê·½³Ì£»
£¨2£©Èô|OA|•|OB|µÄ×î´óֵΪ2$\sqrt{3}$£¬|OA|+|OB|µÄ×î´óֵΪ4£¬Çóa£¬bµÄÖµ£®

·ÖÎö £¨1£©ÀûÓÃͬ½ÇÈý½Çº¯Êýƽ·½¹ØÏµ£¬¼°Æä$\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\\{{¦Ñ}^{2}={x}^{2}+{y}^{2}}\end{array}\right.$¼´¿ÉµÃ³ö¼«×ø±ê·½³Ì£®
£¨2£©°ÑÇúÏßC3£º$\left\{\begin{array}{l}{x=tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$´úÈëx2+y2-2ax=0£¬»¯Îª£ºt2-2atcos¦Á=0£¬½âµÃ|OA|£®°ÑÇúÏßC3£º$\left\{\begin{array}{l}{x=tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$´úÈëx2+y2-2by=0£¬»¯Îª£ºt2-2btsin¦Á=0£¬½âµÃ|OB|£®ÔÙÀûÓÃ|OA|•|OB|µÄ×î´óֵΪ2$\sqrt{3}$£¬|OA|+|OB|µÄ×î´óֵΪ4£¬¼°ÆäÈý½Çº¯ÊýµÄµ¥µ÷ÐÔ¡¢ºÍ²î¹«Ê½¡¢±¶½Ç¹«Ê½¼´¿ÉµÃ³öa£¬b£®

½â´ð ½â£º£¨1£©ÇúÏßC1£º$\left\{\begin{array}{l}{x=a+acos¦Õ\\;}\\{y=asin¦Õ\\;}\end{array}\right.$£¨²ÎÊý¦Õ¡Ê[0£¬$\frac{¦Ð}{2}$]£¬ÊµÊýa£¾0£©£¬»¯ÎªÆÕͨ·½³Ì£º£¨x-a£©2+y2=a2£¬Õ¹¿ªÎªx2+y2-2ax=0£¬»¯Îª¼«×ø±ê·½³Ì£º¦Ñ2-2a¦Ñcos¦È=0£¬¼´¦Ñ=2acos¦È£®
ÇúÏßC2£º$\left\{\begin{array}{l}{x=bcos¦Õ\\;}\\{y=b+bsin¦Õ\\;}\end{array}\right.$£¨²ÎÊý¦Õ¡Ê[0£¬$\frac{¦Ð}{2}$]£¬ÊµÊýa£¾0£©£¬»¯ÎªÆÕͨ·½³Ì£ºx2+£¨y-b£©2=b2£¬Õ¹¿ªÎªx2+y2-2by=0£¬»¯Îª¼«×ø±ê·½³Ì£º¦Ñ2-2b¦Ñsin¦È=0£¬¼´¦Ñ=2bsin¦È£®
£¨2£©°ÑÇúÏßC3£º$\left\{\begin{array}{l}{x=tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$´úÈëx2+y2-2ax=0£¬»¯Îª£ºt2-2atcos¦Á=0£¬½âµÃ|OA|=2a|cos¦Á|£®
°ÑÇúÏßC3£º$\left\{\begin{array}{l}{x=tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$´úÈëx2+y2-2by=0£¬»¯Îª£ºt2-2btsin¦Á=0£¬½âµÃ|OB|=2bsin¦Á£®
¡à|OA|•|OB|=4absin¦Á|cos¦Á|¡Ü2ab=2$\sqrt{3}$£¬
|OA|+|OB|=2a|cos¦Á|+2bsin¦Á¡Ü4£¬¡à$\sqrt{4{a}^{2}+4{b}^{2}}$=4£¬Ôòa2+b2=4£¬
ÁªÁ¢½âµÃa=$\sqrt{3}$£¬b=1£¬»òa=1£¬b=$\sqrt{3}$£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢ÏÒ³¤ÎÊÌ⣬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÔڵȱÈÊýÁÐ{an}ÖУ¬a1=4£¬a4=-$\frac{4}{27}$£¬Ôò{an}µÄǰ10ÏîºÍµÈÓÚ£¨¡¡¡¡£©
A£®3£¨1-3-10£©B£®$\frac{1}{9}$£¨1-3-10£©C£®-6£¨1-3-10£©D£®3£¨1+3-10£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖªÖ±Ïßl1£º2x+my-7=0ÓëÖ±Ïßl2£ºmx+8y-14=0£¬Èôl1¡Îl2£¬Ôòm£¨¡¡¡¡£©
A£®4B£®-4C£®4»ò-4D£®ÒÔÉ϶¼²»¶Ô

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÇóÏÂÁк¯ÊýµÄµ¥µ÷ÔöÇø¼ä
£¨1£©f£¨x£©=ln£¨2x+3£©+x2£»
£¨2£©f£¨x£©=ex-ax£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ·½³ÌÊÇy=8£¬Ô²CµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=2+2cos¦Õ}\\{y=2sin¦Õ}\end{array}\right.$£¨¦ÕΪ²ÎÊý£©£¬ÒÔOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®
£¨1£©ÇóÖ±ÏßlºÍÔ²CµÄ¼«×ø±ê·½³Ì£»
£¨2£©ÉäÏßOM£º¦È=¦Á£¨ÆäÖÐ0£¼¦Á£¼$\frac{¦Ð}{2}$£©ÓëÔ²C½»ÓÚO£¬PÁ½µã£¬ÓëÖ±Ïßl½»ÓÚµãM£¬Ö±ÏßON£º¦È=¦Á+$\frac{¦Ð}{2}$ÓëÔ²C½»ÓÚO£¬QÁ½µã£¬ÓëÖ±Ïßl½»ÓÚµãN£¬Çó$\frac{|OP|}{|OM|}•\frac{|OQ|}{|ON|}$µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÔÚ×ø±êÆ½ÃæÉÏ£¬²»µÈʽ×é$\left\{\begin{array}{l}{x¡Ü3}\\{x+y¡Ý0}\\{x-y+2¡Ý0}\end{array}\right.$ Ëù±íʾµÄÆ½ÃæÇøÓòµÄÃæ»ýΪ16£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Ä³´óѧ²ÍÒûÖÐÐÄΪÁ˽âÐÂÉúµÄÒûʳϰ¹ß£¬ÔÚȫУһÄ꼶ѧÉúÖнøÐÐÁ˳éÑùµ÷²é£¬µ÷²é½á¹ûÈç±íËùʾ£º
ϲ»¶ÌðÆ·²»Ï²»¶ÌðÆ·ºÏ¼Æ
ÄÏ·½Ñ§Éú402060
±±·½Ñ§Éú202040
ºÏ¼Æ6040100
£¨1£©¸ù¾Ý±íÖÐÊý¾Ý£¬ÎÊÊÇ·ñÓÐ95%µÄ°ÑÎÕÈÏΪ¡°ÄÏ·½Ñ§ÉúºÍ±±·½Ñ§ÉúÔÚÑ¡ÓÃÌðÆ·µÄÒûʳϰ¹ß·½ÃæÓвîÒ족£»
£¨2£©ÒÑÖªÔÚ±»µ÷²éµÄ±±·½Ñ§ÉúÖÐÓÐ5ÃûÊýѧϵµÄѧÉú£¬ÆäÖÐ2Ãûϲ»¶ÌðÆ·£¬ÏÖÔÚ´ÓÕâ5ÃûѧÉúÖÐËæ»ú³éÈ¡2ÈË£¬ÇóÇ¡ÓÐ1ÈËϲ»¶ÌðÆ·µÄ¸ÅÂÊ£®
¸½£ºK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨a+c£©£¨b+d£©£¨c+d£©}$£¬
P£¨K2¡Ýk£©0.100.050.01
k2.7063.8416.635

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Óö¨»ý·ÖµÄ¼¸ºÎÒâÒåÇóÏÂÁи÷ʽµÄÖµ£®
£¨1£©${¡Ò}_{-1}^{1}$$\sqrt{4-{x}^{2}}$dx£»
£¨2£©${¡Ò}_{-\frac{¦Ð}{2}}^{\frac{¦Ð}{2}}$sinxdx£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®${¡Ò}_{1}^{2}\frac{1}{x}$lnxdx=£¨¡¡¡¡£©
A£®$\frac{1}{2}$ln22B£®ln$\sqrt{2}$C£®ln22D£®ln2

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸