精英家教网 > 高中数学 > 题目详情
18.在等比数列{an}中,a2=2,a6=8,则a9==±16$\sqrt{2}$.

分析 求出数列的公比,然后求解第9项.

解答 解:在等比数列{an}中,a2=2,a6=8,可得2q4=8,∴q=$±\sqrt{2}$,
a9=q3a6=±16$\sqrt{2}$.
故答案为:±16$\sqrt{2}$.

点评 本题考查等比数列的性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.在△ABC中,内角A,B,C的对边分别是a,b,c.
(1)D是BC上的点,AD平分∠BAC,△ABD是△ADC面积的2倍,AD=1,CD=$\frac{{\sqrt{2}}}{2}$,求b边的值;
(2)若a+b+c=8,若sinCcos2$\frac{B}{2}$+sinBcos2$\frac{C}{2}$=2sinA,△ABC的面积S=$\frac{9}{2}$sinA,求边c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若函数满足f(x)=x,把此时的实数x称为函数y=f(x)的不动点.
(1)若函数y=xm-3的一个不动点是2,求m的值;
(2)若函数g(x)=x2+(a-4)x-3b是区间[b-a,b]上的偶函数
①求a、b的值,并求出这个函数的不动点;
②判断函数F(x)=g(x+1)-g(x-1)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=1+4cosx-4sin2x,x∈[-$\frac{π}{4}$,$\frac{2π}{3}$],有(  )
A.最大值0,最小值-8B.最大值5,最小值-4
C.最大值5,最小值-3D.最大值2$\sqrt{2}$-1,最小值-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=loga$\frac{1-x}{1+x}$,(a>0且a≠1).
(1)求函数的定义域;
(2)判断函数的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,若2sinA+sinB=$\sqrt{3}$sinC,则角A的取值范围是(0,$\frac{π}{6}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若x∈(0,1),比较函数f(x)=x2,g(x)=x-2,h(x)=x${\;}^{\frac{1}{2}}$的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=lnx.
(1)若直线y=2x+p(p∈R)是函数y=f(x)图象的一条切线,求实数p的值;
(2)若函数g(x)=x-$\frac{m}{x}$-2f(x)(m∈R)有两个极值点x1,x2,且x1<x2
①求实数m的取值范围;
②证明:g(x2)<x2-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)已知函数f(x)=13-8x+$\sqrt{2}$x2,且f′(x0)=4,求x0的值.
(2)已知函数f(x)=x2+2xf′(0),求f′(0)的值.

查看答案和解析>>

同步练习册答案